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ABSTRACT

The primary goal of this work is to present for-a control
system a computer-aided-compensator design technique from a.frequency
domain point of view. Up to the present there have only been two simi-
lar procedures developed, and they are somewhat limited. The thesis
for developing the above said technique is to describe the open loop
frequency response by n discrete frequency points which result in n
functions of the compensator coefficients; several of these functions
are chosen so that the system specifications are properly portrayed;
then mathematical programming is used to improve all of these functions
- which have values below minimum standards.

In order to do this several definitions in regard to measuring
the performance of a system in the frequency domain are given, e.g.,
relative stability, relative attenuation, proper phasing, etc. Next,
theorems which govern the number of compensator coefficients necessary
to make improvements in a certain number of functions are proved.
After this a mathematical programming tool for aiding in the solution
of the problem is developed. This tool is called the constraint im-
provement algorithm. Then for applying the constraint improvement
algorithm generalized gradients for the constraints are derived.

Finally, the necessary theory is incorporated in a computer
program called CIP (Compensator Improvement Program). The practical

usefulness of CIP is demonstrated by two large system examples.
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-CHAPTER I

INTRODUCTION

Before the invention of the digital computer, elaborate and com-
plicated numerical techniques for solving problems in.science, mathe-
matics, and engineering were only-given secondary consideration. As
the refinement of the digital computer progressed, its comprehensive
usefulness became more apparent. Today, the employment of the digital
computer is found in:almost every discipline of science and engineer-

ing.

Mathematical Programming

One area in which the-digital  computer has been of tremendous aid
is in the solution of mathematical programming problems. The general

mathematical programming problem may be stated as:

. T
determine the n component vector x '='(x13*xQ; q,q,xﬁ) so that

the maximum (or minimum) of f(xT)
. T _
subject to g, (x" )<, =, >} ¢,
i — - i
i =1, 2, cco, M- (1-1)

is obtained. Each relation in (1<1) is assumed to be algebraic in
nature. The relation, f(xT), is called the . cost:function, whose
extremal with respect to the m constraints of the second relation is
desired. If all the functions.in (1-1) are linear and if the variables

are not required to be integral valued; then the above optimization
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problem is said to be a continuous linear programming problem  (LP).
The solution of ‘the continuous linear programming -problem may be
accomplished with the aid of the simplex-algorithm-first-introduced
by George Dantzig.1 Today the solution of continuous' linear pro-
gramming problems is treated“extenéively“in”many'text books.2232425

On the other hand, if any of the algebraic functions in (1-1) are
nonlinear, then the problem is called ‘a nonlinear programming problem
(NLP)., Up to now there has been no one algorithm developed that will
solve all nonlinear programming problems. -Generally the existence
and uniqueness of a solution cannot even be assured without the cost
function and the constraints possessing certain convexity and con-
cavity properties. By placing various- restrictions'on the functions
in (1-1), there have been several algorithms developed for obtaining

solutions.® 1In general, NLP algorithms are classed-as either simplex

*
in nature or as gradient in nature.

Simplex Algorithms - Probably the-first NLP algorithms developed

were the separable programming algorithms: Problems for which they

are applicable are of the following form:

o

jél By (xp)issr=s 23ey
xj >0 j=1, ..., n

n
maximize (or minimize) z = ) fj(xj) . 1-2)

j=1

%
Here dynamic programming is not considered as a NLP algorithm
but is considered as another branch of mathematical programming.



In order to apply separable programming both the constraints and the
cost functions must be separable into-functions of-single variables.
The mono-variable functions are then approximated: over some finite
interval by sequences of straight lines: - Then a simplex algorithm is
used to solve the approximate problem; The separable programming
algorithms differ in the way the approximations are made and in the
type of simplex algorithm necessary to solve the problem.®

Another simplex NLP algorithm is the quadratic- programming of

Wolfe.ll 1t was. especially developed- to solve problems of the form:

‘Ax = b
x >0
maximize (minimize) 2z = cx + xTDx (1-3)

where A.is an Mx n matrix, ¢ isan nx l'matrix, and'D isan n x n
negative semidefinite matrix. In this case the constraints are linear
and thé cost function is quadratic and concave. The development of
.the algorithm- for solving  (1-3) depends heavily upon the Kuhn-Tucker
conditions,2»7>1!

Still another simplex type-algorithm is the Hocking=Hartley con-
vex programming technique%2 It is used to solve general NLP programming
problems with certain convexity and concavity conditions;' This method
is derived by.approximating the cost; function and.the'constraints by
an infinite number of supporting hyperplanes. Of course this produces
a LP with an infinite number of rows. ' Then by using the duality prin-

ciple of LP the problem is' transformed- into an infinite column problem

which is amenable to solution by the simplex method. The convergence



properties of this algorithm are very reminiscent of the Newton-Raphson
method for finding the roots of a: polynomial, i. e., whenever the
algorithm converges,'itAusually'convergeS'.very'rapidly.12

Of course, there are many other simplex type NLP algorithms; in
fact, there are several versions of those given above. However, for
brevity only the more publicized algorithms and' the basic thoughts

behind them have been mentioned here.

Gradient Algorithms -- In contrast to the simplex type algorithms

there exist the gradient algorithms. The'premier-algorithms of this
type are the gradient projection'methbdl3’1”5 the generalized reduced
gradient method (GRG)IS, and ‘the sequentially unconstrained minimi-

zation technique (SUMT)15:16,17

The basic idea of the gradient-projection method is to start with
a feasible solution and move in the direction of the gradient of the
cost function (for maximization problems) until the solution is found
or until the violation of a constraint'iS“attempted;*' If the viola-
tion of a.constraint is attempted, a direction is determined so that
an increase in the cost function results and no violation of the
constraints occurs. If no direction can'be determined then the
solution has been found.

In the case of linear constraints this simply requires projecting
the gradient into the space defined by the intersection of all con-
straints which are equalities-at the point-under consideration. This

is done by determining

r = Pd (1-4)

*A feasible solution is any point where no constraint is violated.



where r is the directional vector which points in the direction to
move, d is the gradient of the cost function, and P is a projection

matrix. The projection matrix is-determined as
T . =1~T
P = I-0QQQ7Q - (1-5)

where Q is a matrix whose columns are the gradients of the constraints
which are strict equalities at the point of question. Of course if
Q becomes square then P = 0. This does not indicate a solution but
simply indicates that the feasible solution is located at a corner of
the solution space. (For determining the projected gradient for this
case, see Hadley [6], p. 167).

Another so-called gradient NLP method is the GRG method mentioned
previously. This technique is a natural extension of the reduced
gradient method of Wolfe to include nonlinear constraints. The

reduced gradient method was developed- to determine relative extremals

of
maximize £f(x)
subject to Ax < b ' (1-6)
%, 20 i=1,2,...,n .

It is assumed that any n-row submatrix of A has rank n. Next, A is
partitioned intoan nx n submatrix C and a submatrix D, and b is
similarly partitioned into c and d. Then slack variables y and z are

added so that the constraints in (1-6) become

Cx +y

]
¢

1-7)

Dx + 2z = d . (1-8)



All the constraints which are equalities are included in the C matrix.
The variables of z are considered as dependent and those of ¥ as

independent. From (1-6), (1-7), and (1-8) it is easily seen that

Ax = -“C_lAy - (1-9)
Az = DC”L Ay (1-10)
Vyf(x) = - vf(x)c~! (1-11)

where Ax and Az represent the changes in the x's and y's. Vyf(x)
is called the reduced gradient and VE£(x) 1is the gradient of the cost
function. From (1-9), (1-10), and (1-11) a set of rules has been
devised for determining the correct-changes in the x's and y's so that
an increase in f(x) is registered (For additional information see
[30]).

Somewhat different from the gradient projection and GRG methods
is the SUMI. The problems amenable to this technique are those which

can be cast into the following form:

T
minimize £(x7)
T . , .
subject to gi(x ) >0, i =-"1,2, os q
T . :
hj(x ) =0, §J = 1, 2, coes P (1-12)

In applying SUMT the above constrained minimization problem is trans-
formed and solved as a sequence of unconstrained minimization problems
which in the limit converges to a-solution:.  This is dene by forming
from the above cost function and consfraintS'a penalty function of

the following form:



= =

P(xT,R) = f(xT) + R g —— E h§ (XT) (1-13)

1=1 g, ) " 31

where R is a weighting constant greater than 0. For some initial
value of R the unconstrained penalty function; (1-13), is minimized
by some unconstrained minimization technique. Then R is decreased by
dividing it by some number greater than 1 and the process is repeated.
As R + 0 the unconstrained solution approaches a constrained solution.
The physical effects of the two latter terms in (1-13) is to penalize
a trial solution for getting too close  to the boundary of the feasible
region.

There has been.no attempt here to be -all inclusive with respect.
to gradient algorithms. There are several other  gradient algorithms
that have been developed. However, the ones mentioned above are con-

sidered by many as the most prominent and useful methods:today.

Mathematical Programming-in the Design-of-Control Systems

Over the past ten years there has been:a great- thrust to use
mathematical programming in the design'of-control“systems, The major
effort has been in the solutionof optimal control problems, and the
results in this area have been very fruitful--not only in the appli-
cation of mathematical programming but also in theoretical develop-
ments. In fact, it has been shown that the Kuhn=Tucker necessary
conditions of mathematical programming and the maximum principle of
optimal control can be derived from the same set of general optimiza-

19,20,21,22_

tion theorems As can be seen from the lengthy reference



list by Tabak23, much of '‘the work has been directed toward the appli-
cations of linear and quadratic programming. ‘Recently, uses of the
SUMT and the GRG algorithms- in the solution of optimal control
problems have been made,2"%»25,26

On the other hand, the use of mathematical programming in . the
classical design of control systems has been meager-==particularly in
the design of compensators from a frequency domain point of view.
This is very unfortunate-because most- practical system designs even
today are still by classical frequency domain approaches. Further-
more, these approaches are more.artful than analytical. The few
techniques which have been 'developed can be classified as modern con-.
trol oriented or strictly classical control-oriented. This classifi-
cation results from the choices of the performance indices. Those
methods in which system specifications-are submerged in-a cost
functional are labeled as modern control- approaches; while those
methods which represent the system performance by classical standards
such as gain margins, phase'margins, bandwidth, etc., are termed as
classical approaches.

One of the first- successful computerized compensator algorithms

7 In his paper consideration is given to

was developed by Coffey.?
a system similar to that shown in Figure 1. In this figure j parame-
ters of the system are sensed; each parameter is operated on by some
compensation device; the"results of these are summed and fed back.

Figure 1 is considered typical of-large-aircraft or space vehicles.

Each compensator is assumed in the following form:
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e

G(s) = [} a isifl]/[l ;' Zé'b .S
e =1 e D gLy el

i-1, (1-14)

where s is a complex variable and‘Me'*‘l and Ne - 1 are the nume-
rator and the denominator orders; respectively, of the’eth’compensator.
The goal is to select the compensator-coefficients so that the com-
pensated open loop frequency response’ is' a' weighted least squares fit
to a desired open loop frequency response (Of course, the open loop

frequency response is obtained by calculating C(jw)/R(jw) when the

feedback loop is broken at a).

The weighted least-squares fit is obtained by minimizing the

following cost function:

J = l(y*'— ;*)T-WWT(y'— ;>l (1-15)

where § is a vector of the desired frequency response points, y is a
vector of frequency response points, W is'a diagonal weighting matrix,
the asterisk (*) denotes conjugate, and the super T denmotes transpose.
For minimizing the cost function, J, with respect to the compensator
coefficients a gradient gearch algorithm is chosen; and, then, the
necessary gradient vector is calculated.

Next, geometrical properties of ‘the cost function are considered.
It is demonstrated that even for relatively simple systems the cost
function is geometricaily complicated.  From this it is seen that the
cost functions can have relative extremals-and unbounded solutions.
Furthermore, the design of unstable compensators-is possible. Even

with the possibility of these difficulties, it 1is demonstrated that
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this procedure can be utilized to  design practical compensators. This
is done by applying the technique’ to~a sixth order ballistic missile
example. For this system two compensators are designed=<a pure gain
and a fourth order over-a sixth order. The pure gain compensator
approximated the desired frequency response for low frequencies but
was completely unsatisfactory for-higher  frequencies. In fact, for
this compensator the closed loop- system~is unstable. ' On the other
hand the higher order compensator exhibited very good properties when
compared to the desired frequency response.

Coffey indicates that in some instances a' judicious choice of
the elements of the weighting matrix, W, is required before an
acceptable design can be achieved. Thus, a computer program of this
algorithm mighf require several runs-=-while juggling these elements
between runs--before the proper values are conceived. Even with this
disadvantage the algorithm is definitely superior to classical means.

Another technique for computerized  design-of-compensators for
control systems has been presented by Page and Stear.2%:2%9 The thesis
of this procedure is to vary the compensator coefficients until
certain chosen frequency response specifications are satisfied. The

procedure for attempting to do this is

I§ K, (1 - s?/s,9)2 (1-16)
TR D S -

minimize F

where N is the number of specifications considered, Sia is the speci-

fication as a function of the compensator coefficients, S'd is the

i

desired specification, and'Ki'iS'a'weighting‘constant. The constant

Ki is chosen as positive, in general one, for S 8 <5 d and as zero

i — 1
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for Sia > Sid o

neglected. The goal is to drive F to'zero. The reason for the choice

This results in a satisfied specification being

of the above criterion function (1-16) is to try to place the most
emphasis on the specifications which have the greatest violationms.

In order to illustrate the given procedure-Stear and Page pre-
sent an example of the design of an autopilot for an aircraft. In
accomplishing this design four unconstrained optimization procedures
are used. Three are local search procedures, and one is a global
search technique. As in the case of Coffey's cost function it is
discovered that even for simple compensators- the specification
function (1-16) has relative extremals. From this it is deduced that
the global search procedure is more applicable than the local search
techniques if the starting compensator is strictly arbitrary. However,
if a priori knowledge is used in'picking the initial compensator this

deduction is not necessarily true.

Pitfalls of Previous Works on Computerized-Compensator Design

Procedures

The two previously mentioned works' on computerized compensator
design procedures suffer from several drawbacks. First the procédure
presented by Coffey is basically a fréquency response shaping technique,
In the design of compensators for most control systems, this is too
rigorous; i. e., this requires the compensator to satisfy more con-
straints than are necessary. Thus, the probability of all system
specifications being satisfied is-less. Anothef'interesting fact is

that in many instances the frequency responses of control systems
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are not required to match-a desired frequency response--frequency to
frequency--but are desired to have some general shape which can be
translated with respect to frequency.- Even more- conceivable is the
desirability to have several bands of the frequency response to be
various distances from the -1+ jO point of the GH(jw)-plane and to
have other bands of the frequency response constrained to be greater
than or less than limitations with respect to the-origin of the
GH(jw)-plane. Constraints such as these are not as strenuous as those
requiring the frequency response to fit closely to some desired fre-
quency response.

A pitfall which is common to both the Coffey method and the
Stear and Page method is the necessity of choosing some:constants--in
particular, the elements of the diagonal matrix, W, and the Ki's. It
is obvious that in many situations a' judicious choice of these must
be made before any useful results will emerge. ' It was suggested by
these authors that computer programs containing the algorithms may
require several runs with variéuS'values of these constants before an
acceptable design is achieved. However, this-involves trial and
error which was one of the justifications.for going to a computerized
procedure.

Another drawback of the' two algorithms presented is that some
specifications may become-worse while- others:become-better. This
immediately poses some serious.questions, such as, what is a reason-
able trade-off and where does it exist? If minimum standards of
system performance have been set, it is very preobable that nothing

short of these are acceptable. ' In this case there is no trade-off.
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On the other hand, it may be viewed that"in practical designs it is
not unusual to accept performances a little less than that desired.
In instances such as this, performance tolerances must be set.

Another shortcoming of the two methods is their failure to
include inherent devices for maintaining compensator stability. If
the designed compensator is unstable, then the stability criterion of
the system changes completely. The result -might be system instability
which removes the compensator from the realm of a practical design.
What is needed is an algorithm which tends” to improve system specifdi-
cations at every iteration. Of course this might require the allowance
of only incremental changes in the compensator coefficients.

Another pitfall of the two previously mentioned works is the lack
of any theoretical inclusions- on compensator  limitations. - That is,
none of the authors presented any theoretical developments showing
what could be expected from thelr algorithms for a certain compensator
order in a particular system.  Thus, initially there is' no way to know
what minimum amount of compensation is necessary. In addition, these
works presented no theory which-indicates' that the-algorithms will
produce a final compensator that is any better than the initial com-
pensator,

In essence, the techniques of Coffey and Stear and Page are
"firsts" in the use of the computer for compensator designs, but they

are somewhat limited. They do not present- universal solutions in

regard to computerized-compensation. It is the purpose of this dis-
sertation to present the theory and a method of computer-aided
compensator design that does not have the drawbacks of ‘the previously

presented techniques and is thus more universal.



CHAPTER II

FREQUENCY RESPONSE' CONSIDERATIONS IN THE

DESIGN OF A- CONTROL SYSTEM

Before the design of a system can be accomplished, the limitations
or constraints and the desired performance of the system must be
established. The measurement of the performance of the system is
determined by comparing that obtained to that desired. Because of the
limitations, in many instances, the desired performance cannot be
achieved. In designing compensators for practical control systems
there are, in general, two types of performance indices--time domain
indices and frequency domain indices. Although it is quite obvious
that these are related, no analytical means, up to now, have been
devised for defining this relation except for the simplest control
systems--less than third order. In practical designs the main limi-
tations are system stability, nonlinearity, time variance, and
sensitivity. Today many systems are designed by using linearized

frozen time models and applying frequency domain concepts.

Concept of Relative Stability

In most practical systems stability is-a major constraint. 1In
fact, in most system designs a specified-degree of stability is
required. A specific degree of relative‘stabilify'is required because
of inaccuracies in the model of the system or in ordef'to deter insta-

bility if future parameter variations in the system plant result.,
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Sometimes a certain-amount-of relative stability is desired to keep
the system from resonating unnecessarily.

In the past thegdegree“of*relative“stability“haS'been“denotéd
by the classical gain (GM) and phase margins (PM).: However, in some
instances these can be very misleading: “For example; consider the
hypothetical s-plane frequency- response shown.in Figure' 2 which
possesses acceptable classical stability margins (GM > 2.0, PM > 30°)
but which comes within some-small distance of the -1 + jO point. Such
a condition could represent a system which was.very close to insta-
bility. A better measurement of relative stability is defined as
follows:

A stability margin is-defined as the magnitude of the 1 + GH(jw)

frequency response:at one of its minima relative to the origin

of the 1 + GH(jw) plane.
It is deemed by this author that by measuring stability in this
fashion, a measure of the true relative stability of a system is
achieved. Next, a system is said to be relative stable if the fre-
quency response does not' cross-a designated closed contour located
around the -1 .+ jO point. This closed contour around the -1 + j0O
point is called the margin.of stability 1imit.’ The shape and the
size of this contour depend upon system specifications. Furthermore,
there is nothing wrong with making the size and shape of the contour.
frequency dependent. (In doing this the designer would be indicating

that the frequency response is to be  shaped to some extent,)

Relative Attenuation Concept

Although relative stability plans- a major role in compensator

determination, there are several other factors which are considered.

?(D
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One of these is the attenuation of certain  frequency bands:. The reason
for frequency band attenuation is-to-discourage the control system
from resonating at some natural frequency of the system. Of course if
the system is linear and time-invariant this is not necessary. Un-
fortunately, many practical- systems-do not fit into:the linear, time-
invariant category.

" Frequency band attenuation may be-treated by requiring that all
frequency points that are to be attenuated fall within a chosen con-
tour around the origin in the GH(jw) plane. This contour is called
the margin of attenuation limit. It then follows that:

An attenuation margin is the magnitude of the GH(jw)

frequency response-at one of its ‘maxima with respect to
the origin. of the GH(jw)‘plane°7

Other Frequency Response Concepts

Relative stability and attenuation are-considered as the most
important frequency response design' criteria. - However, they do not
yield acceptable designs in-all-instances. "Sometimes it is necessary
to employ proper phasing of certain frequencies.’ This is usually
employed when it becomes difficult to determine a compensator to
attenuate certain natural frequencies of the system and in addition
to satisfy other_system'requirements;'“The*general'idea is to
determine a compensator so thatthese frequencies are-phased toward
the right half of the GH(jw) plane. This results in these frequencies
being attenuated in the closed loop system.

In some cases it is even necessary to place special emphasis on

certain points of the frequency response. In most instances.these
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points are closely related  to dynamical responses of the control
system. Examples of dynamical-responses considered for-a space craft
are wind response and "engine-out" response. In order that these
responses possess'acceptable characteristics-it is usually necessary
to require certain frequency response-points to be placed in certain
regions of the GH(jw) plane.

Still anothgr'frequency'response=design'concept'is bandwidth.
However, this can be handled by either-the stability margin or the
attenuation margins. For example, the maximum open loop bandwidth
can be achieved by requiring a cgrtain“frequency and all frequencies
above it to have a certain margin of attenuation limit. Similarly,

closed loop bandwidth could be controlled by a combination of these.

Problem Formulation

Assuming that the desired- frequency response’ characteristics have
been determined so.that if they are achieved- the performance of the
system will be acceptable, it must be decided how to determine a
compensator for achieving these. "The-classical means of doing this
is by trial and error; however; a more-efficient method would be an
iterative method that makes' improvements upon the system's: frequency
response from iteration to iteration or indicates that no further
improvement could be made. In fact, if a total of n critical frequency
points have been chosen, then the problem may be formulated as the

following nonlinear programming problem:

Determine a vector xT such that
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i = 1, ...y n (2-1)

In (2-1) xT is a vector of the'compensator*coefficients;‘gi is a
function of thekith’frequency; Wy and the compensator coefficients.
The functions, g4 i=1, ..., n, are chosen so as to represent the
frequency response limitations and constraints which have been imposed.
For example, -3 could be representative of a stability margin or an
attenuation margin. The second relation in (2-1) takes into account
any constraints that might be placed on the compensator coefficients.
It may be necessary to constrain some of the coefficients if it is
desired to keep the d. c. gaiﬁ, G(jO), of the system constant or above
or below a certain level. Also, it may be necessary to constrain
certain,compensatof coefficients to insure the stability of the
compensator or to take into account realizability cqnditions°

The above formulated nonlinear programming problem differs from
the classical nonlinear programming problem in the respect that it is
strictly a constraint problem.®  There-is no cost function to maximize
“or minimize. Howeve;, this does not simplify matters. In fact, the
above problem can be thought:of as a normal-nonlinear programming
problem in which it is desired-to find-a:solution which obtains a
certain objective function-value. - In this case the objective function
just becomes a constraint., If - the-objective function is added to the
constraint list, then the result is-a strict constraint problem as

given above. The desired solution to this problem is a feasible

solution which may or may not exist.



- CHAPTER III
- COMPENSATOR' LIMITATIONS

At any iteration in' solving the problem mentioned in' Chapter II,
there will result conditions of the form of-(2-1) to be improved.
(The number n can change'fiom'one iteration to another since the
frequency response changes with respect to the compensator.) The
general idea is to change the compensator coefficients so that each
constraint comes closer to being satisfied.  The question then is,
how many compensator coefficients are required to insure that some
improvement on each constraint‘ét a certain-iteration can be made?
This question is answered by the following definitions.and theorems.
Definition‘i

An optimal direction in the GH{(jw) plane is any chosen

direction in which it is desired to perturb-a point on

the frequency response.

Optimal directions are illustrated in-Figure 3 at points A, B, and
C. The number of compensator coefficients gufficient to perturb n

polar frequency response points in'n optimal-directions.is given by

the following theorem:
Theorem 1

A sufficient condition to perturb n points on a polar frequency
response curve in n optimal directions with a realizable.compensator
is that there be at least 2n independent compensator coefficients

which are available to be varied.
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Figure 3. A GH(jw) Frequency Response for Illustrating
Optimal and Sub-optimal Directions
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Proof: Let the open loop frequency response be denoted by
Go(jw, xT) where'xT'iS'an"midimensional"vector of the functionally
independent compensator coefficients. Also, let the optimal
direction at a frequency‘wk”be“denoted'by dk*' Suppose there are n
points on the frequency response which are- to be moved iﬂ the n
chosen directions, respectively. The change of the open loop transfer
function at the kth frequency with respect to the'ith'compensator
coefficient is of the form

T
G (Fuw,, x7)
0 k (3-1)

ki T 3%
axi

where ¢, . and e, ., are real constants. ' There are, for a particular

ki ki
frequency, m such partials as (3-1) and, if they were included as the
components of a single vector, the result would be the complex
gradient. It is well known that this points in the-direction of the
most.rapid change. However, this'is not the desired direction of
movement. Essentially what is needed is a directional vector [w] in
complex m-space whose dot' product with the m dimensional gradient

*
vector [ck + jek] will yield the desired directional derivative dk s

or in. equation form (See [32])

* . , . T )
dk = [ck’+'3ek] [w] . (3-2)

It should be obvious.that the components of [w] are proportional to

the amount that each compensator coefficient must be varied in order
%

that movement in the d, direction can be accomplished. Thus if the

k

compensator is to be realizable, [w] must be a real vector.
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Letting
4. = a +4b,° (3-3)
k- % Yy
then (3-2) can be written by the following two real equations:
* _ 1. qT (-
a, = [ck] [w] (3-4a)
and
b.* = e 1T (3-4b)
R 0 R A2 -
Hence, for n points on the frequency response to be moved in n
optimal directions there result 2n equations or
* T
a; = [ey]” [w]
* fa-1T
b, = [e;]" [w]
* T
a = [c 1" [w]
o 1T
b, = [e;]" [w]
*_ T
b, = [e,]" [w]
* T
b = [e ]’ W] . (3-5)
In matrix notation (3-5) becomes
* T
a c”
s e s oo e = eeo0 o e [w] (3_6)
b* el
a” T
where the dimensions of '[--;-} y ..i.] , and [w] are
' b e

fespecfively 2nx 1, 2n x m, and m x 1, If 2n > m there will result
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more equations than unknowns and possibly an incompatibility.3! Hence
there may not exist a vector [w] such that all equations can be satis-
fied, This says there .are not enough compensator coefficients avaii-
able. On the other hand if 2n < m, there either results less equations
than unknowns or the same' equations' as unknowns. For the first case
there will exist an infinite number of vector [w]'s and an infinite
number of solutions to the equations. This indicates an excessive
number of compensator coefficients. " In the second case there will be
a unique [w] and, thereby, a unique solution for the equations. This
means that the exact number of compensator coefficients necessary is
being employed.8

The preceding proof has shown the sufficiency condition for mov=-
ing the frequency response in n-optimal directions. - Suppose, however,
that it is desirable to use a compensator with a fewer number of
coefficients than those needed ‘to move~in the optimal directions.

Consider the following definition:
Definition 2

A sub-optimal direction is any direction within /2
radians of ~an optimal-direction.

An optimal direction is just a two-space vector; then, a sub-optimal
direction is any two-space vector which has a positive dot product
with an optimal direction. Thus; a sub-optimal direction is any
Qector which falls within a certain open half-space, e.g., a sub-
optimal direction to B in Figure 3 is any vector which points to the
left of the line passing through B.

If the optimal and sub-optimal directions for Wy are respectively

represented in 2-space by the following vectors :
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X - @t 3-7)
and

- .

d, = (ak R bk) s (3-8)

then the sub-optimal direction would be any direction such that the

dot product

4 -4 3
k% >0 (3-9)
or
* *
aa +bb’ >0 . (3-10)

Then the question is, how many compensator coefficients are necessary
in order to assure that movement in some sub-optimal direction can be
achieved? The answer to this is stated and proved in the supervening

theorem.
Theorem 2

In order to be assured of perturbing n points of an open loop
frequency response in n sub-optimal-directions, by varying the compen-
sator coefficients, it is necessary that' there be n independent.
compensator coefficients available for variance.

Proof: The components of thé'kth sub-optimal vector direction in
terms of the real and imaginary parts of the partials at the kth
frequency are given by

a = .z, Cri ¥y - (3-11)
i=1
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(3-12)

o
L]
Il t~
1]
)

where cki and eki

(evaluated at wk) of the partial of the open loop transfer function
h

» respectively, are the real and imaginary parts

with respect to the ith compensator coefficient, and LA is the it

unknown constant which is to be determined so that (a bk) points in

k!
a sub-optimal direction. ' Substituting (3-11) and (3-12) into (3-10)

results in

m m
) e, w,a * 4 ) e.w, b * 50 (3-13)
. ki "1 "k Lo ki i Tk
i=1 i=1
or
Voo atde b yw 0 . © (3-14)
LT B T O N ! ‘

Remembering that there are n frequency points, n inequalities
like (3-14) will result. Hence the following matrix inequality can

be obtained:

[cTa* + eTb*]'[w] >0 . (3-15)

The dimension of-[cTa* +‘eTb*] is n x m.  In order to berassured that
all n inequalities can be satisfied, it is necessary that there be at
least the same number of unknowns as inequalities. Hence, this says
there must be at least n independent compensator coefficients in order
to be assured that n frequency points can-be perturbed in the sub-
optimal directions.®8

The above two theorems place limitations on the overall compen-

sator order. Thus for any algorithm to be assured of being able to



make the changes given in the  theorems, the theorem must be sat-

isfied.
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-~ " CHAPTER IV
CONSTRAINT IMPROVEMENT  ALGORITHM

It is very desirable to have"én'algorithm which starts with
some initial compensator and, then, in an iterative fashion produces
an improved frequency response. ' This statement immediately suggests
the question--what is an improved frequency response? This is

answered by the following two definitions.

Definition 3
A total improved frequency response (TIFR) in an iterative
scheme is one whose unsatisfied constraint values at a

certain.iteration are better than they were at the last
iteration.

Definition 4
A sum improved frequency response (SIFR) in an iterative
scheme is one whose sum of-the differences-in the unsatis-

fied constraint values and' their desired-values is a positive
value from one iteration to the next.*

It is obvious that an algorithm which is capable of producing a TIFR
is also capable of producing a SIFR; however, this statement is not
reversible., A TIFR algorithm requires every constraint which is
unsatisfied to be improved or bettered-at every iteration, while a

SIFR algorithm only necessitates a sum improvement, i. e., the sum

*It is assumed, here, that all constraints in (2-1) have been
represented in the < form by multiplying > constraints by -1 and
changing = constraints to two inequality constraints (See Hadley
[6]). No generality is lost by doing this.
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increase must be better than the sum decrease. The goal is then to
derive an algorithm which is compatible to both TIFR and SIFR.

Thus, an algorithm is needed for solving a nonlinear program-
ming problem of the following form:

Determine the vector xT such that
g.(x) > b 1 = 1 o (4-1)
: 2 b s see s .

Again this is strictly a constraint problem. If this problem has a
solution, then it is a point in a solution space (Theoretically the
solution space could be a single poiﬁt). The functions in (4-1) are
not assumed either concave or convex. What is desired is an iterative
algorithm which, when started at some initial guess at the solution,
will at each iteration produce an improved solution from the solution
at the last iteration or will indicate that no further improvement

can be made. An improved solution is defined as one which brings the

constraints closer to being satisfied.

Constraint Improvement Algorithm Derivation

- . . T
Suppose that some initial starting point, X has been chosen.
Of the m constraints, let n be the number not satisfied by this point.
The constraints not satisfied are defined as the active constraints,

and those satisfied are called the <rnactive constraints. Let J
contain the index numbers of the active constraints, i. e.,

J = {ky, koy «uuy kn}° Essentially what is desired is a directional
vector, D, by which the vector x can be changed, and it will be possi-

ble to get an improved solution. This vector can be calculated as

D = v + v + ... + v . ~
a1VeK, + 2V, anV8y (4~2)
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In (4-2)

k k see o k €J ’

1 72°

ngi denotes the gradient of the constraint corresponding to the ky
index evaluated at ka, and{ak}is a set of constants that are to be
determined. An improved solution can be assured if the a's are

determined so that

D ngi >0 i =1, ... ,n . (4-3)

In other words the maximum rate of increase of gkiat kais in the
direction of_ngi, but an increase in gkican be registered by traveling
in the direction of any vector which has a positive component in the
direction of the gradient. In fact, suppose that a value for each of

the dot products in (4-3) is chosen. Then (4-3) becomes

D - Vek, = c2
. = 4—
D ngn Ch (4-4)

T
where the vector ¢ = (c,, ¢., «+e5 C_) contains the chosen dot
1 2 n
product resultants. Substituting (4-2) into (4-4) results in the

following set of linear equations,

\Y LAY + (V + Vv o+ .. + (V - V =
( 8k, 8k1)31 ( B, 8k2)az ( 8K, gkn)an cy

]

\Y) + Vv a; + (V - Vv + ... + (Vv Vv
( gk_z gkl).l ( gkz gk2)82 ( gk2 gkn)an Co

[
[e]

(ngn . ngl)al + (Vgp, * ngz)az S +.(ngn- ngn)'an = ¢, . (4-5)
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Using matrix notation (4-5) becomes

T

[VG VGla = ¢ , (4-6)

T R .
in which a =[a; a, ... a,]° and VG is a matrix whose columns
are composed of the gradients of the active constraints (The matrix

[vet

VG] is the Gramian matrix of the gradient vectors under con-
sideration--see Hildebrand [31].).

If the gradient vectors are linearly independent then
a = [VG - VG] c . (4-7)

Hence, this will yield a's for a desired dot product between the
directional vector D and each gradient of the active constraints,?

By moving in the direction of D then it is possible to improve the

present solution.¥

Algorithm Summation

Using the derivation and the preceding terminology, the con-

straint improvement algorithm may be summarized as follows:

_ T
X = X + h[VG]la

in which X£+l and xi are the solution points at the (k + l)th and kth

*In the above derivation the gradients were used. However,
vectors in the directions of the gradients will suffice. In fact, it
has been found in practice that unit vectors in the directions of the
gradients are more suitable when the gradient magnitudes become
disproportioned. The main advantage is a greater convergence
rate.
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iterations respectively, [VG] is a matrix whose. columns are composed

of the gradients of the active constraints evaluated at xi s

-1
a = [VGT

where ¢ is a column matrix of positive constants, and h is a positive
constant.

The choice of h (the step size constant) determines how much or
whether any improvement in the constraints is made. In a compensator
design program h also determines whether the program is a TIFR or SIFR
algorithm. As a general rule small positive values of h produce a
TIFR and larger values of h produce a SIFR. Of course there is a max-
imum limit on h for producing a SIFR, i. e., values of h above the
maximum do not produce either a TIFR or a SIFR. On the other hand,
negative values of h are out of the question since they tend to
decrease the constraints--making them even worse.

In addition to choosing h, a choice of the components of the c¢

vector must be made, As has been pointed out previously, the com-
ponents of ¢ are the dot products of the directional vector, D, and

the gradients of the active constraints. Thus by properly choosing the
c's the amount of increase in some of the constraints can be, to some
extent, controlled. In other words by judicious choice of the c's some
constraints can be weighted more heavily than others. However, the
actual amount of change in a constraint is related to h and the con-
straints' partial derivatives. In practice it has been found that
when using unit vectors in the directions of the gradients of the con-
straints a good choice of the elements of the ¢ vector is 1l's. This

choice gives the best convergence rate.
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On the other hand, there is nothing wrong with making the c's
dependent upon the constraint values, e. g., by letting a c decrease
as its constraint comes closer to being satisfied. However, as a c
approaches zero the algorithm would tend to determine a direction that
was parallel to the boundary of the feasible region. Hence, the proba-
bility of the constraint corresponding to this ¢ becoming inactive
decreases. Nevertheless, it has been discovered that in many instances
that by holding the c's at respectable positive levels many of the
constraints are driven to inactivity and they do not return to activity
again. In this case the order of the matrix whose inverse is required
can be reduced, whereas, if all constraints always linger in activity
the order can increase if other constraints become active on higher

iterations.

Algorithm Limitations and Termination

Next, attention is focused on algorithm termination. There are
three conditions in which the algorithm will terminate. These are

1. All constraints are inactive.

2. One of the gradients of one of the constraints becomes zero.

3., The gradients of the active constraints become linearly

dependent. |

The first of these simply indicates that a solution has been obtained.
The second and third represent relative extremal ‘solutions. In fact,
the second one shows that the solution point is a relative extremal of
one of the constraints. On the contrary, the third termination con-

dition indicates that at least one of the constraint gradients is a
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linear combination of the others' gradients or there are more active
constraints than there are variables (This could represent an incom-
patibility condition.). Whenever 2 or 3 occurs either the solution
obtained will have to be accepted or a new starting point will have

- to be chosen and the algorithm reinitiated.



" CHAPTER V
GENERALIZED PARTIAL CALCULATIONS

In essence, the goal of fhe designer . is to pull and push various
points on the frequency response until system specifications have been
met or until no further improvements can be accomplished by the present
compensator. In general, this can be accomplished by pushing and
pulling the various points with respect to other points iﬁ the complex
GH(jw) plane. For example, relative stability can be obtained by push-
ing the points of the stability margins away from the -1 + jO point.

On the other hand, the attenuation margins can be improved by pulling
these points toward the origin. ~Similarly, proper phasing could be
achieved by attempting to pull or push these points with respect to
real axis points. Of course, in some specialized cases it may even be
advantageous to pull or push a point with respect to more than one
point. Regardless of whether a point is to be pushed or pulled it is
necessary to know how these points change with respect to other points
in the GH(jw) plane. This is especially true if the algorithm in
Chapter IV is to be used in perturbing these points.

A point can be pushed or pulled with respect to another point,

- K, in the complex GH(jw) plane by varying the distance squared,
d(w), between the point and - K. 1In order to determine how this dis-
tance changes with respect to the compensator coefficients, con-

sideration is given to the general-feedback control system shown in
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Figure 1. The open loop frequency response -of this system is deter-

mined by breaking the feedback loep at a and then calculating
GH(jw) = C(jw)/R(jw) . - (5-1)

Furthermore, to generalize even further in Figure.1l each channel's

compensator is assumed to be made up of a product of sub-compensators,
th ' Cte of

i.e., the k= channel's compensator is given as

0y

G, (s) = @I G
k =1

*
where n, 1is the number of sub-compensators in the kP channel. The
uncompensated open loop state frequency response of the»kth'channel

with all channels opened is defined as

8
= (G0 = a () + jb () (5-3)

where a, is the real part and bk is the imaginary part.

From the above equations and statements it then follows that

n 2

i k
d) = [K+ ) {[ak(w) + 3b, ()10 T Gki(jw)]} . (5-4)
k=1 i=1

By assuming each sub-compensator to be a general rational function of

the following form

.St x
qu(S) = - — , (5-5)

* ' 4
This is called the factored form of a. compensator.
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it becomes necessary to derive only how d(w) changes with respect to

the coefficients of this general compensator, because the change in d(w)
with respect to any compensators' coefficients will assume the same
general form, only differing by the orders, n and m, and the numerical
values of the x's and y's. Since,qu(jw) is completely independent of
all the other compensators, then it may be isolated from the others in

(5-4)., This is easily done by letting

j nk.
A+ 3B=K+ ] {[a (@) + b I[ T G (juwl} (5-6)
k=1 * B M
k#q
and n
. s L. q ya
c+3jd = [aq(w) + qu(w)] 121 qu(Jw) . (5-7)
i#p

Using (5-6) and (5-7), (5-4) is rewritten as

d(w) = |A+ jB + (c + jd)qu(jw) 2 . (5-8)

Substituting (5-5) into (5-8) and carrying out the necessary manip-

ulations (5-8) evolves as

) ) ] 2
( C,x, + A E,.vy,. = B E,. Veosiiq) +
120 ivi 420 23723 420 2j+1 72j+1
n p k
(iZO Dyx; + A .ZOAE2j+l Vo541 * BjZOEzjyzj)
d(w) = 2 - (5-9)
j SN 2
( E,.v,.) + ( Eq.y1Vnsgq)
=0 23723 j=0 2j+172j+1
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where in (5-9) 'k =‘m/2 ~and p=m/2 -1
if m is even
or k= (m-1)/2  and p = (m-1)/2
if m is odd;

the C's, D's, and E's are defined by the following sets:

-{Co, Ciy, Co, C3, Cy, Cg, ...} ='{c, -dw, —sz, dws, Cwu, —dms, ceol

.{Do, D;, Dy, D3, Dy, Dg, ...} =.{d, cw, —dwz, —cw3, dw”, cws, veol

{1, w, —w?, -w3, W%, w3, ...},

-{EOS E;, E», E3, Ey, Es, 0-7}

(5-10a,b,c)

Next, letting

n k P
FN1 = Z C,x, + A '{ E2jy2j - B .z Epsel Y2541 (5-11)
=0 j=0 =0
) i j
FN2 = D,x, + A En.yq VYoui,q + B E,.Vo. (5-12)
jo0 11 =0 2341 72j+1 320 23723
k
Pl = ] Ey ¥y, (5-13)
j=0
P
P2 = ] Eyiuq Yoy (5-14)
j=0
2 2
FD = (FD1) + (FD2) (5-15)
2 2
FN = (FN1) + (FN2) (5-16)
then
5d 2[FD(A « FN1 + B + FN2) -~ FN - FD1]E
O " (5-17)

ax FD) 2
q (FD)
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for q even or

3d (w) 2[FD(-B + FN1 + A.+» FN2) - FN. « FD2]ES
= (5-18)
X (FD) 2
q
for q odd and
ad (w) 2[FN1 +.C. + FN2 + D_.] ’
= d d (5-19)
Byq FD

for q even or odd.

By programming equations (5-4), (5-6), (5-10a,b,c), and (5-11) -
(5-19) on the digital computer the partials of d(w) with respect.to
the coefficients GqP(S) can be obtained,?’10

The above derivation provides the key for determining how any
sub-compensator affects d(w) in a first order sense. With a complete
comprehension of this derivation it becomes clearly apparent how to
proceed either from channel to channel or from sub-compensator to sub-
compensator in order to determine the necessary partial derivatives
for a particular frequency point. Of course, this process must be
completely repeated for each individual frequency point. Once the
gradient vectors of each chosen frequency point are determined, then
the calculation of the directional vector is accomplished as described

in Chapter 1IV.



CHAPTER VI

COMPENSATOR IMPROVEMENT PROGRAM

The preceding ideas were programmed in a digital computer program.

called CIP (Compensator Improvement Program). A complete fortran

version of this program is contained in the Appendix. The general

iterating procedure employed by :CIP is as follows:

1.

Using the compensator at hand, the program calculates the
critical points, i. e., stability margins, attenuation margins
and other points of interest.”

If this is the first iteration a preselected step size is
chosen. Otherwise, a step size is selected according to one
of two criteria.

Next the active constraints are separated from the inactive
constraints.

After this, unit vectors in the direction of the gradients
with respect to the variable compensator coefficients are
obtained (The numerator partials are listed first).

Then using a chosen dot. product vector the directional vector
is determined (For the normalized gradient vectors calculated
in 4, a suitable dot product vector has been found to be a

vector whose components are 1's).

%*

The other points of interest are frequency response points on
which special attention is to be placed, for example, points to be
properly phased, certain gain or phase margins, etc.
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6. Finally, the directional-vector is normalized with respect
to its magnitude; the compensator coefficients are changed
according to the normalized directional vector and the step
size; then, the complete process is repeated.

In order to initiate the program, an input of discrete open loop
frequency responses in the form of frequency and real and imaginary
parts are required. Allowances are made for five channels of such
information with a maximum of 999 points for each channel. This means
that in Step 1 the actual critical points of the frequency response
are not located--only approximate values are found. However, exper-
ience has shown that the approximate values suffice.

In order to determine better approximations to the critical
points the input would require open loop transfer functions (Equation
5-3) for each channel. The more accurate approximations of the
critical points could be found by finding the real roots of equations
of degree 2n, where n is the total number of the open loop system (See
5-1).* For systems above tenth order this is completely impractical
due to the amount of computation time necessary to perform this task.
Furthermore, in many practical situations an experimental ‘discrete
frequency response is the best information available for describing
the system. In other words an experimental frequency response is
obtained, and using this data a transfer function of the system is
approximated.

Also, some initial compensator for each allowable channel is

required. The amount of initial compensation must be enough to

*In this discussion it is assummed that due to round-off error
a computer is not capable of getting exact solutions- of non~integer
problems.
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stabilize the system.,* "If the system is open loop stable then each
initial compensator can be chosen"as an equivalent 1' compensator, i.e.,
the numerator and denominator factors are chosen to be the same. The
compensators may be either in a factored or unfactored form (It is
apparent that the unfactored form is- just a special case of the
factored form).

In Step 2 the proper step size is chosen. In the CIP one of two

procedures for selecting the step size is employed. These are

a. Require the betterment of all active constraints from the
last iteration.

b. Require the sum of the differences of all active constraint
values and their desired values to increase from the last
iteration (For this sum-all active constraints of the <
form have been changed-to the > form by multiplying by -1).

Procedure a indicates the program is-to be used in the TIFR phase,
while procedure b designates the program as SIFR. The choice of the
criteria used is left to the designer: If the one chosen is satisfied,
the present step size is doubled; provided that the doubling process
does not exceed some preselected maximum step size value.** OQOtherwise,
the maximum step size value is utilized. Regardless of which of these
occurs the program continues to the next iteration. ' On the other

hand, if the continuance criterion is not satisfied then the step size

is halved and the present iteration is repeated if the step size is

*
If the system is not stable then relative stability has no
meaning--although relative instability might.

k% . ‘s . .
The main reason for limiting the step size is to keep the com-
pensator from becoming unstable on"a single iteration.



44

greater than some chosen minimum step size. When the step size

: *
becomes less than the minimum value the program is terminated.

Steps 3, 4, and 5 are simply operations necessary for employ-
ment of the constraint improvement algorithm of Chapter V, whereas,
in Step 6, the compensator coefficients are actually changed. In
Step 5 the reason'for'reducing'the'directional vector to a unit
vector is so that the step size actually designates the overall change
in the compensator coefficients. Otherwise this would not be the
case,

The output.of the CIP can be controlled to occur at every
iteration or at set increments, i. e., a set number of iterations
can be skipped between outputs. At any iteration at which an output
occurs the following information is printed by the CIP:

1. Iteration number

2. Constraint values

3. Frequencies where constraints occur

4, Desired constraint values

5. Type of constraints

6. Directional vector at the last iteration

7. Compensators at the present iteration
In 5 the type of constraints denotes whether it is a phase margin, a
gain margin, a stability margin, or an attenuation margin, and the
symbols used to denote these are respectively P, G, S, and A.

In the program stability margins are the main vehicles for

determining the relative stability of the system. The concepts of

%
The program, also, has a maximum iteration termination condition.
Since this has no effect on convergence, it was not included.



classical phase and gain margins have been included in the program
because in some special cases these can be used to control proper
phasing and various dynamical responses of the system. Furthermore,
it should be pointed out that the measurement of these concepts is-
carried out exactly as stability margins, i. e., distances from the
-1 + jO point. Of course there is a one~to-one correspondence
between this measuring method and the normal methods of measuring

phase and gain margins.
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CHAPTER VII
LARGE SYSTEM EXAMPLES

In order to illustrate the practical usefulness of CIP, the
improvements of the compensators for large systems are presented.
This is done by way of two examples; the first example is a single
channel system, while the second example is a dual channel system.

The two systems are not the same, although they are very similar.

Single Channel Example

In this example the system under- consideration is similar to
that shown in Figure 1, but only one channel is fed back. The
system's dynamics, 6;(s)/R(s), are described by the gain vs frequency
and the phase vs frequency plots' shown in Figures 4 and 5.  This sys-
tem is a model of the Saturn V/S1-C Dry Work Shop at a flight time of
80 seconds. By an inspection'of'these"frequency response plots it
is revealed that this system has several poles near the jw-axis.

This deduction is based on the spike- shaped gain response and the
almost discontinuous changes in the phase respohse. These poles near
the jw-axis are due to various sloshing and bending modes of the
vehicle.

This vehicle is inherently open loop unstable. Thus, it is
necessary to use a control scheme, such as depicted by Figure i, to

stabilize it. Also, unity feedback with a pure gain compensator is

not sufficient to stabilize the system. A compensator with unity
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feedback which is-capable~of stabilizing the system is

G (s) = 0.9 Le0* 11.79440s +28.59200s® 100.0 +6.05720s + 7.56640s>
c "7 1.0 + 21.56500s +6.05650s2 100.0 + 10.06500s + 6.32880s?

1000.0: +. 19.08700s _+ 3.73500s2
1000.0" +°330.35200s + 19.02000s2

(E1-1)

The GH(jw) compensated frequency response is shown in Figure 6. In-
cluding the compensator, this frequency response represents‘é 29th
over a 35th order s&stem.

In the design of the preceding compensator- several physical
limitations and constraints were considered--other than: just stability
of the system (In fact, stabilization of the system can be easily
accomplished by a simple lead network with: a reduced d. c. gain).

Some of these are

1. From past history it.is known that-compensators with very
small d. c. gains produce poor wind responses. An acceptable
value of d. c, gain is 0.9.

2. On the GH(jw) frequency response the first negative real axis
crossing with respect to increasing frequency is called the
aerodynamical gain margin. Experimentation has shown that
the major effect of an "engine-out' is a reduction of this
margin. A safe crossing=po§nt'is considered as ~2 or less
(or a . frequency response magnitude greater than 2).

3. For a small band of frequencies around 1.199 Hz the frequency
response is dominated by: the- first bending mede. It is

desirable to attenuate this band of frequencies.~ However,

to even approach other system requirements and perform this
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attenuation has been-praetically impossible. - It has been
found that the same effect-results-if this band of frequen-
cies is phased in the'right halfref the GH(jw) plane. Due
to the fact that the frequency: of: this mode 'is not known
exactly; it is necessary-to require: larger:phase margins for
" this mode' than normally-required. . Acceptable margins are a
lead phase margin of  about 55°-and ‘a lag phase margin. of
about 90° (The reason for the-difference is that in most.
physical systems phase lag-is more probable to occur than
phase lead).

4. For frequencies greater than 2.1 Hz the GH(jw) frequency
response is dominated by the higher order bending modes.  The
control system can be-deterred  from: resonating at any of.
these higher modes by :attenuating to acertain degree all
frequencies above 2.1 Hz: "These frequencies are considered
satisfactorily attenuated-if the magnitude-of the GH(jw)
frequency response is less' than 0:25 for £ > 2.1 Hz.

5. Besides the above frequency response requirements, it is
desirable for all stability-margins to be 0.5 or-greater
(Notice that in terms“of“c1assica1:stability“margins this is
approximately equivalent  to having phase margins of 30° and
gain margins of 2 or better).

By an observation of Figure 6 it becomes-evident that all of the above
specifications are not met. - This becomes even more obvious after an
inspection of Table 1. 1In this table the first'margin-is the aero-

dynamical gain margin.and the next two margins are the lead and lag



52

000sC°0
000sZ°0
000SZ°0
000sC°0
000sC°0
000sC’0

0060S”°
00s0s”
00S0S°
0050S*
00506 *
00s0S”*
‘00§06 °
00606~
0060S”°
0060S°
00506*
0060¢”
00s0¢*
00606~
0000€°T
0000670
00000°T

1

NIDEVH
NIDIVI
NIDIVR
NIDEVH
NIDEVH
NIDIVH

NISEVH
NIODEVH
NIDEIVH
NIV
NID¥VIK
NIDIVH
NIDEVR
NIOUVK
NIDEVK
NIDIVH
NIOIVR
NISUVKH
NIDUVKH
NIDEVH
NIV
NIDUVH
NIOYVKH

aTdwexy Tauueyn S78urs 3O

@Id1sad
aadaIsdd
IYIsSIa
TI4154d
@gda1sad
qIyIsad

@IIsHd
qIaIsdda
@aaISaa
@I9ISsad
A49ISsEd
qayISHd
qadIsHad
TI4ISda
L3184 d
QIdIsad
EyISsaEd
@E¥ISsad
aadaIsad
qIIISEdA
qId1s3d
TIEISHa
TH31I53C

ZH
ZH
ZH
ZH
ZH
ZH

NOIIVRIOANI AONANDTYd @EIVANALIV

ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH
ZH

ZH
ZH
ZH

NOIIVWEOANI -ALITIGVLS -HATLVTIEY

LET8S 8
CLYHe9
869G Y
99.19°¢
GZ919°¢
9€6S°¢

LEBTS"8
Y6CLS Y
679T19°¢
Ly%6S°¢C
¢L988°1
YTIYT 1
6606L°
T%269°
979¢s”
L8ETS”
0009¢*
000TT*
0¢%80°
Gg8eo0’
0006C°1
T8060°T
YA AV

[

nesrqey [eTITUI

XONANDT UL
XONZNOAUL
AONANOIYL
XONINOTYA
XONZNOTYL
AONHNOTYA

AONANOTYA
AONTNOTIL
XONZNOTYA
ADNENOT YL
AONINDT UL
XONANDTYA
AONINOT YA
AONINOT YA
XONHENOTYL
AoNAndIYA
AONZNOATYI
A0ONENdTEA
AONHNDTIA
AONENOTEL
XONENOTYA
AONZNOAYA
2ONZNOTYA

T 9198l

0T96¢"
0¢000°
€6Lees
T0000°
TO000°
T€G8C*

~059%8°

q6e8L”
66666 "

“9T9TL"

¢0%66°
6L6ST"
7YLTS”
YOTTIG" -
€CLLY” -

~N

€£98€9°

%e¢8TE”
Th98L”
GGSh6°
9¢ 488"
e09°1

“88LET"T

9¢v88° -

i

i

i

€¢
(44
1¢
0c
6T
8T

Or-l NI N0~

NN NOMN0 O

*ON
*ON
*ON
*ON
*ON
*ON

°ON
*ON
*ON
‘0N
*ON
*ON
*ON
*ON
*ON
*ON

- *ON

*ON
*ON

- *ON

*ON
*ON

. *ON

SNIAVY NIDIVR
SNIAvVd NIODEVKH
SNIAVE NIDEVK
SNIAVE NIDIVH
SNIAVE NIDYUVKH
SAIAVE NIDEVKH

SAIAVE NIDEVH
SNIAVY NIDIVK
SNIAVY NIDYVK
SAIAVY NIDEVK
SQIAVY NIDYVRH
SAIAVY NIDYVH
SNIAVE NIDYVH
SNIAVY -NIJEVH
SNTIAVE NIDEVH
SNIAVE NID¥VK

SAIAVE NIDIVH

SNIAVE NISEVH
SNIAVY NIOSYV
SNIAVI NIDIVKH
SAIAVY NISEVK
SNIAVE NIDYIVH
SNIAVY NISYVR



53

phase margins of the lst bending mode, respectively.* The remaining
margins listed under attenuated frequency information are stability
margins as definéd'in this paper, and of course the attenuated infor-
mation is representative of the attenuation margins above f = 2.1 Hz,
In the CIP program the following 'specifications were made:
1. Determine the aerodynamical gain margin and improve it if
it is less than 2. In-order to improve any point it is
necessary to specify what point or points-in the complex
GH(jw) plane this point-is to be pulled or pushed with
respect to. For this example it is chosen to push this
point with respect to the -1 + jO point.
2. Determine the lead and lag-phase margins of the first bend-
ing mode and improve-either-or both if they: fall below 0.9
and 1.3, respectively. To improve these it is chosen to
push them from the -1 + jO point.
3. Detect all stability“margins'and'increase'thosé less than
0.505. 'Again the -1 + j0:point is chosen as-a-pushing point.-
4, Detect all attenuation margins for £ > 2.1 Hz. and decrease
all of those greater than-0.25. For these margins the origin of

the GH(jw) plane is chosen as a pulling point.

The measurements of these-stability margins are made in the
same manner as stability margins-defined-in Chapter-II, i.e;, the
distance from the =1 '+ jO point. "Measuring gain margins in this way
is quite natural. However, measuring phase margins-in this way is not
as straight forward, even though there is a one"to one correspondence.
The equations relating the two are: d-=:2'sin 6/2 and 6 = 2-arcsin d/2,
where d is the distance from the -1+ jO point -and 6 is the phase:
margin. Of course d is limited to the closed interval [0,2].
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The continuance criterion chosen was b of Chapter VI. With these
insertions and the necessary frequency-response information in CIP,
the following compensator was obtained-after 2000 iterations (or
approximately 30 minutes on a UNIVAC-1106):

1.0 +°74.40524s+ 107.13383s% 100.0 + 7.29719s + 8.68710s2
1.0 + 124.68711s + 16.85849s2 100.0 +-11.98668s + 9.1548452

Gc(s) = 0.9

1000.0 + 12.10541ls + 3.11162s2
1000.0 + 219.54201s + 20.42297s>

(E1-2)

A tableau of the pertinent information: at iteration 2000 is shown in
Table 2. From this tableau it is seen that most margins are, for
practical purposes, satisfied. The reason that several of the margins
have values that are only approximately-equal to the desired values is
that, in most instances, after a margin becomes inactive it has a
tendency to oscillate between activity and inactivity on higher itera-
tions., However, by establishing an upper limit. on the step size from
iteration to iteration these constraints are coerced to remain in a
vicinity of their desired values' (For this example the maximum step
size was chosen as 0.1 for the first:1000 iterations; then, to speed
up convergence it was changed to 0:2 for the next 1000 iterations).

The three smallest stability margins-do not belong in the same
category.as those mentioned "above~because-at-no- time were they inactive.
Since program termination was maximum iteratiens, additional improve-
ments in these constraints is quite conceivable. -Nevertheless, the
convergence curve shown in Figure'7-indicates many more iterations will

be required before any appreciable change in the smallest of these
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margins is recorded. With-an-eecurrenee- such as this the designer is
left with three alternatives:
1.  Accept . the present design.
2. Pay the toll of additieonal- computer: time and: attempt
additional iterations.
3. - Change some-of the-desired-constraints-and-continue the
program.
From experience it has-been found:that small-changes-in the desired
margins can result in marked“efféctszf‘fAs~for'the=case‘under dis-
cussion the GH(jw) frequency response in- Figure 8 reveals that for

practical purposes the compensator-for-iteration ZOOO"is»satisf_actory.10

Dual Channel Example

Again reference is made-to Figure-l,; except in' this case it is
assumed that j = 2, i. e., two-channels are-fed back. The uncompen-
sated open loop system is described by the gain and-phase frequency
responses shown in Figures 9, 10, 11, and 12. Figures 9 and 10
represent the gain and phase-plots-of 8j(s)/R(s); while Figures 11
and 12 are the gain and phase plots of 85(s)/R(s). This system is

typical of the Saturn V/S1-C Sky Lab at-a flight time-of 105 seconds.

*It should be noted that-at-the-end-of-iteration 2000 the .CIP was
slightly modified so that a"better calculation of-the first negative
real axis: crossing frequency was.obtained. - After-this; additional
iterations were attempted and in less than-50: iterations the smallest
stability margin was increased from-0:46513 te 0:48177. In another
instance the compensator whose-smallestrstabijlity margin ‘was 0.48177
was used as the starting compensator-in-another run-in-which the rela-
tive stability requirements were lowered to-0:49°while the other
system requirements were the same as-previously stated. ' In less than
50 iterations all system requirements- were completely- satisfied.
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Compensators which have-been-designed for this system are

1000.0 +-6.54732s"4-4:57328%. 100:0°+-6:04029s

Gl(s) = - ,
100.0 + 1.43424s - -100.0 + 6.17455s
10.0 + 3.69000s: -0:1-4:1:04000s. - 1.0
10.0 + 2.32980s: 0.1 + 2.33536s :10.0 + 1.05603s
100.0 - - L
100.0 + 4.13275s (£2-1)
6,(s) = 0.58 1000.0 +2.91040s' +-4:50787s%--100.0 + 4,71096s
100.0 + 3,52502s - - 100.0 + 4.61899s
10.0 - 10.0
100.0 + 5.49396s 10.0 + 1.21426s
10.0 .
(E2-2)

10.0 + 2.85080s

With these compensators. inserted in the system the compensated open
loop GH(jw) frequency response, C(jw)/R(jw), with the loop broken at
a 1is that shown in Figure 13.

It is desired to make several "improvements in this frequency
response. These conditional improvements are

1. Keep the aerodynamical gain-margin-at 4.37 or greater.

2. Increase all stability margins of 0.49-or less.

3. Maintain the lead and lag phase- margins of the first

bending mode at 55° and-90° or:better.
4. Decrease all attenuation margins-occurring at frequencies

above 2.0 hz when 0.2 or greater.

LL
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In order to make these improvements-the-following specifications are
made in CIP:

1. Whenever the aerodynamical gain:margin is 4.8 or less it is
pulled with respect to-the =7 =j3 point and pushed with
respect to the =1 + jO point.

2. All stability margin points less  than 0.49 are pushed with
"respect to the =1+ jO0.

3. The lead and lag-phase margins are pulled with-respect to
the 1 + jO point when' less: than 0:9-and 1.3 respectively.
Also, the attenuation margins-occurring at-frequencies
between these two-are decreased by pulling with-respect to
the origin of the GH(jw) plane if: they are:greater than 9.0,

4, The attenuation margins-above-2.0 hz are-decreased-by pulling
them with respect to the origin.

With these specifications, 357 frequency response-points for each

channel, and the initial compensators;-(E2-1) and (E2-2), in the CIP,
the following compensators were obtained after 200 iterations or about

10 minutes on a Univac .1106:

+1000.0: +-7:072938=++7: 02583821000 - - -
100.0 + 1.21230s ©100.0 + 10.48567s

GZ(S) = 1.26

10.0 + 3.43938s-#0s1-+-1,21370s
10.0 + 1.14372s 0.1 + 2.51497s

1.0 .. ..100.0-
10.0 + 1.14372s 100.0 + 9.34985s

(E2-3)
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1000.0 + 6.74527s +: 45386852 - 100.0:+-4.57638s
100.0 +0.0s S 100.0 + 1.26840s

Gz(s) = 0.58

10.0 - - . . 10.0
100.0 + 6.96980s: 10.0 + 1.44585s

10.0

— . E2-4
10.0 + 1.44585s (£2-4)

An evaluation of the amount of improvement can be made'by comparing

the initial tableau, Table 3, of important information to the final
tableau, Table 4, As in the last example the first margin is the
aerodynamical gain margin, and the next two margins are the lead and

lag phase margins of the first bending mode respectively. The remain-
ing margins under relative stability information are listed as stability
margins. The margins under the attenuated frequency information are

the attenuation margins above 1.2 hz. The desired margins' values are
listed in the right hand column.

Taking into" account the desired-improvements- it is seen that
significant improvement has been'made;"Furthermore, this is reinforced
by comparing the initial compensated-frequency response; Figure 13, to
the compensated frequency response at-iteration 200, Figure 14. The
termination reason was maximum iterations; thus, as in the first
example the designer is left with the same three-alternatives. From
the convergence curve shown in-Figure-15, it-appears that severai
additional iterations may have to be attempted before-any significant
improvement in the smallest stability margin is observed. The impor-

tance of this example is the significant improvement over the initial

frequency response.
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Additional Analysis'gijesultsvand*Commen;s

The results obtained from- the two examples clearly indicate that
the CIP can be a valuable design aid. ‘It must be pointed out that as
the name, Compensator Improvement- Program, imples the program is a
design aid, not a design technique: That is, 'the program does not
decide the order, the type, or the number of compensators necessary.
All of this requires good engineering: judgement before the running of
the program is attempted.

As the two examples exemplified-the solution cannot be worse than
the original compensator if the- specifications-on the-input are made
properly. In regard to stability margins-and attenuation margins this
simply requires pushing and pulling-these; respectively, with respect
to the -1 + jO and 0 + jO points. By doing this, these-‘can always be
bettered, except when they proceed from activity-to inactivity. How-
ever, the amount of slippage in going from inactivity-to activity can
be minimized by choosing a reasonable maximum step size such-as 0.1 or
less of the smallest compensatorr-coefficient.  As long as a margin
stays in a vicinity of the desired-value-it+-is—-acceptable.

The specifications for insuring the improvement in gain and
phase margins are not alyays-as~simple-as~-those: for-stability margins
and attenuation margins. In-fact;~in many-instances it -is necessary
to push and pull these with-respect-to two points~in  the~complex
plane. This 1s especially true-if  the acuterangle-between the tangent
to the GH(jw) frequency response where these occur and either the tan-
gent to the unit circle or real-azis-is very-small.  Both of these

cases are illustrated in Figure 16 where tangents to some hypothetical
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GH(jw) frequency response are-assumed asaAiand*B; ‘The-points o and B
ére the points where the margins-oecur. - If they are perturbed so that
the distances between them and the =1 +"jO .point .are increased,; then
they are allowed to move in any direction which has-a positive dot
product with vectors emanating from the =1 +:j0 point" to" these points.
Suppose that o was perturbed in-the-direction 6 -indicated-in Figure 16.
It is obvious thatgby‘moving'a'in'thiS"direetion'the'vector from -1 +
jO to «a is'increasing“injmagnitude:‘"However;ﬂafter'a*iS‘perturbed it
is no longer the point of interest: - Some-other-point such as A is
then the point under“consideration;"whereﬁxjiS'in'some“neighborhood of
o, From practical considerations-it-is-known that: if ‘o moves in the
direction 0 then a small neighborhood around o will move in the direc-
tion 6. Let A be in this neighborhood:  ~The-result-is that A will be
the new point of intersection with-the  real-axis; and, furthermore,
its distance from the -1 + jO point- is less than what a's was. Similar
results can be demonstrated for B.

These types of problems can-be circumvented by perturbing a point
- with respect to two points in the-complex-plane.  ~In fact consider the
example in the last paragraph. -Suppese that o is not only pushed with
‘respect to the -1 + jO point, but-it-is also pulled with respect to
the -7 - j4 point. The permissible-regionfor the movement of ‘a now
becomes the intersection of the permissible:region for pushing from
the -1 + jO point and the permissible-region for-pulling with respect
to the -7 - j4 point. The result is the-cross<hatched area in
Figure 16. Movement of o anywhere in this region cannot result in

the gain margin being decreased.
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For the single-channel-example-conditions-did not~exist to warrant
pertubations with respect to more than onepoint.-..On .the other hand
the.dual channel example required-perturbing:the~aerodynamical gain
margin with respect to two points: ~Runs-in- which this was not done
resulted in a significant reduction+in'.this margin.

In neither-example-did-the  lead and-lag-phase-margins-of the first
bending mode become-active. -In'the-single-channel:-example; conditions
just never prevailed. ‘As for the dual-channel-example; conditions.
would have probably resulted-if-the-magnitude-of-the-first bending mode
had not been controlied by the-attenmation-margin technique:. ~Since the
frequencies where these margins-occur-are very close to the frequency
of the first bending mode; then-it-is-quite-natural that an increase
in the first bending mode magnitude would have resulted in the reduc-
tion of at least .one of these margins.

The program indicated for-the-dual-channel-example that better
results could be obtained with-one less zero-in the numerator of the
first channel's compensator-and one less pole in the second channel's
compensator. It did this by driving these-to-infinity. ' It also drove
two poles in each channel to-equal-values: ‘This probably indicates
that if these poles were included-in second order-factors they would.
split into complex conjugates. ~However; the first order pole:factors
were chosen so that complex poles-would-not be-allowed.

One.other fact which should-be-pointed out:is that the program
was used in the SIFR mode. ﬁowever;“because'of'the"maximum step size

choices (0.1 for the first 1000 iterations-of the first- example and
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0.2 for the second 1000 iterations and 0.1 for the second example) the
program actually performed in-the TIFR'mode.?*

One phenomenon-which-should not pass-without mention is the
apparent unsmoothness of the convergence:curves; Figures 7 and 15. 1In
actuality, these curves should be discrete-curves. -For convenience
they were drawn continuously. The-sharp, abrupt changes, where the
smallest stability margins make much-greater gains than-on-other itera-
tions, occur at iterations-where-the aerodynamical gain margin became
inactive, This allowed the-smallest-stability margin to make a marked
- gain for ‘one iteration: -While- this-was~occarring the aerodynamical
‘gain-margin was returning to-activity:--Once-it-became-active again
the rate-of increase-of;the-smallest-stability margin-decreased. On
“higher "iterations the~curve-was-smooth-until-the-aerodynamical gain.
""margin went inactive-again;-at-which  time-the-process was-repeated.
The overall: effect-of the-program-is-a-“ratchet"~type, i. e.; once a

‘margin-is-increased; it will-not-decrease.

< .
Of course again this is neglecting instances where constraints
went from inactivity to activity.



- CHAPTER VIII

CONCLUSION, LIMITATIONS, AND SUGGESTED

FUTURE" STUDIES

Summary

In this dissertation, "the-theory-for~a compensator  improvement
algorithm has been presented:- “The-.goal from-the-onset was to accom-
plish this by way of mathematical-programming. -Thus, in Chapter I
a concise review of the more-popular-mathematical -programming tech-.
niques was given. After this-review-a-discussion of the uses of
mathematical programming in the-design-of -control-systems was pre-
sented. Also, a discussion of the uses~of mathematical-programming
in the design of control systems-was.made, -In this discussion it was
pointed out that only a small-amount of-effort-has been devoted to
using mathematical programming-as-an-aid-in-the-design-of ~control
systems by classical means., "~Furthermore;it was-shown that the tech-
niques which have been developed-suffer- from  some-serious-drawbacks.

- Thus, the thesis-of this-dissertation-was-to-develop-a  computerized
- “compensator-design-procedure-which-circumvented- these pitfalls.

‘In  Chapter-II; some  important-concepts-for-the-measuring of
expected performance of ~a-control-system were-given. This-involved
“~defining-relative-stability in-a-way somewhat-different from the
- normal textbook definition. -Also; concepts-of relative attenuation

and-proper phasing were-defined:--Finally; 'using-these the design of

‘a“compensator was formulated-as-a-mathematical-programming problem—-

which in the end ‘resulted in'a-strict-constraint problem.
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In Chapter III-compensator-limitations -for two-possible-iterative
techniques for-solving the problem-formulated in Chapter-II were pre-
sented by the proving of two-theorems:-. The first-theorem showed that
to be assured of being able-to-perturb-n-points-in-the GH(jw) ‘plane

in n optimal directions there must-exist-2n-coefficients for -variance.

'On the other hand; Theorem-2 stated that-if-each-point-was given 180°

“of freedom for movement- (a sub=optimal-direction); then only n-coef-

ficients were needed-for-variance: - From this-it was -deduced that a
sub-~optimal algorithm-would-be-the-most- practical.
"Then, in' Chapter IV the-development-of-a-sub<optimal-algorithm

was-made: ~The-result-was- the-evolvement of-the-constraint-improve-

‘ment-algorithm. - In this development-several definitions were  given,

e.g., total improved frequency-response, sum improved- frequency

‘response, improved-solution, and-active and passiverconstraints.

" In order to-employ the-constraint improvement algorithm in

“Chapter IV, it was~expedient-to-haver~the-gradients of the active con~

straints. - These were-found-in- Chapter V- for é'generéi jth“channel
control system. - Furthermore, the-partials-were derived so that push-
ing or-pulling-on-points-of the-frequency response-could be accom-

plished with respect-to any points-desired-in the-complex~GH(jw)

“plane.

"Next, the ideas-and material-in-Chapters-II; III, IV, and V were

‘included in ‘a computer program-calted-€IP:(Compenzator Improvement

Program). In Chapter VI the general-iterating-procedure of this pro-
gram was incorporated. ‘In-addition; several special- programming

techniques employed by CIP were presented in:this' chapter.
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Chapter VII was used to demonstrate-the- practicality of CIP. This
was 1llustrated by two large system examples. These examples clearly
showed the program's capability of handling single “or multi-channel con-
trol systems. A significant-amount-of improvement in the frequency
response of both systems was seen~after an application-of CIP. "Also,
curves to show the convergence properties-of:CIP were given. 1In
addition, several comments-in-regard-to-proper specifications-for the

program were mentioned. .

Limitations and ‘Concluding Remarks

One of the limitations of CIP-is- that the initial- compensator must
be chosen to stabilize the-system:- This-is-the reason’ that the program
was termed an 'improvement program" rather than a design program. A
major goal of the program is-to improve-stability margins, etc., from
one iteration to another. -Obviously; if-the system~is initially un-
stable then stability margins-have no-meaning.

Another shortcoming of CIP-is' that-a choice-of "the components of
the ¢ vector in Chapter IV must-be-made: . If-the strict constraint
problem has a solution which-is-reachable from the-initial starting
point, the choice- of the ¢ vector-has-little consequence-other than to
affect the rate of convergence: - "However; if "the problem does not have
an obtainable solution; then the-choice-of this vector will definitely
determine the relative extremal-where-convergence occurs.  “Neverthe-
less, it should be pointed out that-if-the-initial-guess-at the
solution is not a relative extremal then the-solution-at convergence

will be better than the initial solution.
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A very good property-which CIP-possesses-is an'inherent ability
not to design an unstable-compensator; provided the step size is main-
tained at a reasonable value: -The-reason-for this is  that CIP con-
tinuousiy improves relative-stability;- thus-the stability of the
system cannot decrease.

Although CIP requires-a-choice-of-the-c vector elements, it still
has the capabilities of-yielding-a-practical-design-on every run. As
long as the input-specifications-of the-program-are- properly made,
the program cannot yield a compensator-worse than the original compen-

sator. CIP is not a“design-technique, but it is-a design aid.

Suggested Future Studies

There are several areas:in which the work in this dissertation
can be extended. 'One such study could involve using the constraint
improvement ‘algorithm in-other design ‘problems in engineering and
science. This author does not-see-any reason .that it could not be
used to make improvements-in-any:design-where “the number -of -variables
is greater than the number-of ‘constraints-to be controlled -and where
the gradient vectors: of the constraints-are-deterministic.

Also, it is foreseen by this -author-that the-constraint  improve-
ment algorithm could-be the-basis of -a-new or-extended-gradtfent algo-
rithm for nonlinear programming. -For-example; if-any-of-the elements
- of the ¢ vector-are set to zero then-the-determined directional ‘vector
will lie in the-tangent-planes-of "the- constraints-corresponding to the
c's with zero value. 'Of course this-would-be similar to the gradient
projection technique mentioned-in-Chapter-I:- However; it-is-deemed by

this author that-by using the-constraint improvement "approach an
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optimal gradient projection algorithm can be. developed. Up to the
present such an algorithm has not been developed.

In regard to future studies in compensator design, there would be
nothing wrong with starting with physical electrical networks, rather
than transfer functions. If a program started with a network and varied
the elements for making the improvements described previously, the end
results would be the actual network needed. The practicality of this
network would depend upon the constraints placed on the network ele-
ments.

A compensator design procedure could be devised using the con-
straint improvement algorithm on the Routh-Hurwitz array. By forming
the characteristic equation as a function of the compensator coeffic-
ients, the first two rows of the Routh array can be formulated as
functions of these compensator coefficients. Since it is known how the
other rows of the array are formed from the first two rows, the changes
in the elements of the first column of the array with respect to the
compensator coefficients could be determined by an application of the
chain rule for partial derivatives. Then, the constraint improvement
algorithm could be used to drive all the negative elements of the first
column positive, as long as the number of negative elements did not
exceed the number of compensator coefficients. If all the elements are
driven positive then a certain amount of relative stability could be
achieved by evaluating the characteristic equation at (s + a) where a is
a positive real number; the previously mentioned procedure can now be
applied to the new characteristic equation. If in this application all
elements of the first column could again be driven to positive values,

then it would be known that no pole of the closed loop system has a



real part greater than - a. This process could be repeated until a
desired value of a is achieved or until all the elements of the first
column of one of the characteristic equations cannot be driven

positive.
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APPENDIX
COMPENSATOR IMPROVEMENT PROGRAM

In the following is a complete Fortran version of the Compensator
Improvement Program. The program is completely self-contained, i.e.,
it does not réquire anyisystem library, etc. The necessary input to
the program is explained in the comment statements at the beginning of
the main p?ogram. Furthermore, all inputs except the frequency
response points are printed out with explanations of the input speci-
ficatiéns. The other output is, also, explained by certain comments

printed out with the informationm.
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MAIN PROGRAM

DEFINITIONS OF I/0 VARIABLES

KCHNL =NO. OF CHANNELS FED BACK

NUMC(T) -NO. OF COMPENSATORS IN I-TH CHANNEL

NRATOR(IsJ) =NUMERATOR ORDER OF J=TH COMPENSATOR IN THE I~=TH CHANNEL
NDENOM(I»J) =-DENOMINATOR ORDER OF J=TH COMP, IN I-TH CHANNEL
XCOMN(IsJ) ~NUMERATOR COEFFICIENTS OF J=TH CoMPs IN I-TH CHNL.
YCOMN(I,J) ~DENOM. COEFFICIENTS OF J-TH COMP., IN I~TH CHNL.
OMEGA(]) =I=TH FREQ.(ASSUMED TO BE IN HZ.)

GRA(IrJ) -J=TH REAL PART OF OPEN LOOP FREQ. RESP., OF I-TH CHNL.
GIA({Iry) -J=TH IMAG. PART OF OPEN LOOP FREG. RESP. OF I=TH CHNL.

KSTART =STARTING ITERATION NO.

KQUIT ~STOPPING ITERATION NO.

KPOINT =NO+ OF POINTS FROM OPEN LOOP FREQ. RESPONSE USED

KPRINT - NO. OF ITERATIONS SKIPPED BETWEEN PRINTING OF INFOR.

STPMAX -MAXIMUM CHANGE TO BE MADE IN COMPENSATOR COEFFICIENTS
ON ANY ONE ITERATION(PROBABLY NC MORE THAN 30% OF THE
SMALLEST COMPENSATOR COEFFICIENT OF THE INITIAL
COMPENSATOR)

STPMIN = MINIMUM STEP SIZE DESIGNATOR

F10 & Fil = FREQUENCIES BETWEEN WHICH G.M.'s ARE FOUND

Fiz & F13 - FREQUENCIES BETWEEN WHICH P.M.'S ARE FOUND

FMIN = AeM«'S ARE FOUND FOR FREGQS. ABOVE THIS FREQ.
VAKIABLES FOR GAIN MARGIN RADI1 DESIGNATIONS

IF FREQ. «LE. F1 DESIRED MARGIN = R1
IF FREG. «6T. F1 BUT +LTe F2 DESIRED MARGIN = R2
IF FREQe «GE. F2 DESIRED MARGIN = R3
VAKIABLES FOR PHASE MARGIN RADII DESIGNATIONS

IF FREQs oLE. F3 DESIRED MARGIN = R4
IF FREQ. «6T. F3 BUT +LTe. F4 DESIRED MARGIN = RS
IF FREQe. «GE. F4 DESIRED MARGIN = R6
VAKIABLES FOR STABILITY MARGIN RADII DESIGNATIONS
IF FREQ. «LE. F5 DESIRED MARGIN = R7
IF FREQ. «GTe F5 BUT «LTe F6 DESIRED MARGIN = R8
IF FREQs «GE+ Fb6 DESIRED MARGIN = R9
VARIABLES FOR ATTENUATION MARGIN RADII DESIGNATIONS
IF FREQ. oLE. F7 DESIRED MARGIN = R10
IF FREQ: +GT. F7 BUT «LT. F8 DESIRED MARGIN = R11l
IF FREQ. «GE. F8 DESIRED MARGIN = R12

GAIN(I)-DENOTES INITIAL D. Co GAIN VALUE FOR I-TH CHANNEL
KNR(I) =~NUMBER OF NUMERATOR COEFS. FOR I=-TH CHANNEL
KDR(I) ~NUMBER OF DENOM. COEFS. IN I-TH CHANNEL
KONT(I)~D.Co DESIGNATOR FOR I=TH CHANNEL

KONT(I)=1 GAIN ALLOWED TO VARY



KIFM
PPT(I)

LSIN(T)

INCGMS

INCPMS
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KONT (I)=2 GAIN NOT ALLOWED TO VARY

=NO+ CHANNELS THAT FREQ. RESP. INFIRMATION IS TO BE READ IN

=POINTS THAT THE CRITICAL FREQUENCIES WILL BE
PERTURBED WITH RESPECT TO (COMPLEX POINTS)

I=1 GAIN MARGIN POINT

I=2 PHASE MARGIN POINT

I=3 STABILITY MARGIN POINT

IS4 ATTENUATION MARGIN POINT
- DENOTES wHETHER POINTS ARE TO BE PUSHED OR PULLED
LSN==1 POINT TO BE PULLED

LSN=+1 POINT TO BE PUSHED
=INDICATES WHETHER GeMs'S ARE TO BE ARTIFICALLY
INCLUDED AS SeMs'S

INCGMS=0 NOT INCLUDED

INCGMS=1 INCLUDED
~INDICATES WHETHER P.Me'S ARE TO BE ARTIFICALLY
INCLUDEED AS S.M.'S

INCPMS=0 NO INCLUDED

INCPMSZ] INCLUDED

SOME INTERIOR VARIABLE DEFINITIONS

GCR(Ird)
GCI(Ivy)
GCOMR(frJ)
GCOMR(I,J)

GR(I)

GI(D)

=REAL PART OF COMPENSATOR FREG. RESP. AT SOME ITERATION
~IMAGs PART OF COMPENSATOR FREQ. RESP+ AT SOME ITERATION
=REAL PARTS OF I-TH CHNL. OPEN LOOP FREG. RESP.

-IMAGe PARTS OF I-TH CHNL. OPEN LOOP FREQ. RESP,

=REAL PARTS OF TOTAL OPEN LOOP FREG. RESP.

~IMAG. PARTS OF TOTAL OPEN LOOP FREQ. RESP.

*#xkxk THERE ARE 13 READ STATEMENTS *x*#*xx%
DIMENSION XCOMN(10,50)»YCOMN(10,50)+PRY(50) PRX(50)»STBM(99),

PX(50) »PY(50) +R@(99),6R(999)+»GI(999) +OMEGA(999) +GRA(5¢999) s

1 .

2 GIA(50999)rG6(20+199) »DV(50) »WEIGHT(50) rBCOMN(10+50)
3 BCOMD(10+,50)+6CR(5¢999) 1GCI(5r999) 1 GCOMR(5¢999) ¢
4
5

GCOMI(59999)» NUMC(20) yNRATOR(10,20) yNDENOM(10+,20) »CNUM(10)»

COOM(10) »KNR(10)KDR(10)»COTN(10+50),COTD(10+50)
DIMENSION KACT(99),SML(g9)
DOUBLE PRECISION GyDVIWEIGHT
DIMENSION KONT(20),» KPTS(99)s» GAIN(10)
DIMENSION TYPE(99)
DIMENSION PPT(4)r LSN(H4)
COMMON TYPE
INTEGER TYPE
CoOMPLEX PPT
READ(5¢5) KCHNL
READ(5¢5) (KONT(I)»I=1rKCHNL)
READ(5¢5) (NUMC(I) »I=1»KCHNL)
WRITE(6¢1) KCHNL
1 FORMAT('0'»5X» *NUMBER OF CHANNELS FEDBACK=',I5)
WRITE(693) (KONT(I),»I=1,KCHNL)

3 FORMAT(10'»SXr*DeCy GAIN CONSTRAINT DESIGNATOR FOR EACH CHANNEL (
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1KONT=1» ALLOWED TO VARY; KONT=2¢ HELD CONSTANT )t/6Xs8(12,10X))
WRITE(6,4) (NUMC(I)»I=1,KCHNL)
4 FORMAT('0*r5X» 'COMPENSATORS PER CHANNEL'¢1015)
D0 2 I=1+KCHNL
KNAT=NUMC (1)
READ(5¢5) (NRATOR(I»J)rJ=1rKNAT)
WRITE(696) I (NRATOR(I»J) rJ=1rKNAT)
& FORMAT (10" +»5X» *CHANNEL NO#'9rI2+2Xs» "NUMERATOR ORDERS'»2Xs1015)
READ(5¢5) (NDENOM(I»J)»J=1,KNAT)
WRITE(6,»7) 1+ (NDENOM(IrJ)rJ=12KNAT)
7 FORMAT(* v95Xs *CHANNEL NO+*912+2Xe *DENOMINATOR ORDERS'91015)
2 CONTINUE
5 FORMAT(1615)
READ(5¢10) KSTART'KQUIT,KIFMsKPOINT+KPRINT» R1/F1eR2¢F2/R3»
1 RUeF3rR5)FUIREr RTIFSIRB8¢F61RIe R10/F79R112F8rR12» FMINIF10»
2 F11+F1l2¢F13+sSTPMAX»STPMIN
10 FORMAT(5I5/5F10+5/5F105/5F10.5/5F10+5/8F10,5)
WRITE(6»11)KSTARTIKQUIT KIFMeKPOINT»KPRINT
11 FORMAT(10»1X» '*START ITER«='1I512Xe*'STOP ITER«='21I5+2X» 'NOs CHNL
1FREQes RESPe IN='¢I592X»*NOs OF FREQe POINTS='¢I15+2X» "PRINT INCREME
eNT=1,15) ’
WRITE(6025)STPMAX»STPMIN
25 FORMAT(10*rSXr "MAXIMUM DESIGNATED STEP SIZE ='»F10.5/6X» "MINIMUM D
IESIGNATED STEP SIZE ='+F10.5)
WRITE(6,12)
12 FORMAT(*0*5SXs'DESIRED GAIN MARGIN RADII DESIGNATIONS')
WRITE(6,13) F1esR1lr F1sF2¢R2» F2/R3
13 FORMAT('0v¢5Xs*IF FREQUENCY +LE.'+F10.5:,5X¢'DESIRED MARGIN IS?'»
1 F105/76X0'IF FREQUENCY «GT¢'rF10e502X2'BUT oLTo*¢F10.5¢2Xe *DESIRE
2D MARGIN IS' (rFl0.5/6Xe'IF FREQUENCY cGT.'!FlOoS!ZX.'DESIRED MARGI
3N 15'¢F10.5)
WRITE(6+17) F10+F11
17 FORKMAT(* '¢5X»*'GAIN MARGINS ARE DETERMINED BETWEEN THE FREQUENCIES
1 OF*9F10.5¢2X2*AND'»F10.5)
WRITE(6,14)
14 FORMAT(*0'»S5X»*DESIRED PHASE MARGIN RADII DESIGNATIONS?)
WRITE(6+13) F3rRU4r F39F4rR3» F4+R6
WRITE(6,18) F12/F13
18 FORMAT(* '»5X»*PHASE MARGINS ARE DETERMINED BETWEEN THE FREQUENCIE
1S OF ' 1F10.592Xe "ANDYrF1045) '
WRITE(6,15)
15 FORMAT('0'¢5Xs *DESIRED STABILITY MARGIN RADII DESIGNATIONS?')
WRITE(6913) F5+/R7» F5:F6¢R8¢ F6/R9
WRITE(6r16)
16 FORMAT('0'»5X»*DESIRED ATTENUATION MARGIN RADII DESIGNATIONS')
WRITE(6013) F7,R10» F7+F8/R11r F8r/R12
WRITE(6+,19) FMIN
19 FORMAT(Y '»5X»*ATTENUATION MARGINS ARE FOUND FOR FREQS. ABOVE'»
1 F10.5) '
READ(5¢50) (GAIN(I)»I=1,KCHNL)
WRITE(6020) (I+GAINCI)rI=1eKCHNL)
20 FORMAT(?0?'»5Xr2('CHANNEL NOe'rI301Xs'INITIAL DeCe GAIN IS'»F10.5



1 $X))
READ(S¢50) (PPT(I)sI=1ry)
WRITE(6,22) (PPT(I).I=let)
22 FORMAT('0'r5X» *PERTUBATION POINTS FOR GAINs PHASEs» STABILITY. AND
1ATTENUATION MARGINS, RESPECTIVELY:'/6Xr4 (*REAL'IF6212Xs *IMAGe ",
2 F6.202X))
READ(59¢5) (LSN(I)sIz1re4)
WRITE(6¢23) (LSN(I),I=1,4)
23 FORMAT('0'¢5Xs *DENOTING WHETHER EACH OF THE PRECEDING POINTS ARE !
1 ¢ *TO BE PUSHING OR PULLING PQINTS(PUSHING=+1l, PULLING==1)' /6X»
2 4(12,10X))
READ(5¢5) INCGMS» INCPMS
WRITE(6+24) INCGMS,INCPMS
24 FORMAT('0'»5X» *DENCTING WHETHER GAIN OR PHASE MARGINS ARE ARTIFICA
1LLY INCLUDED AS STABILITY MARGINS(NOT INCLUDED=0+ INCLUDED=1)'/6X»
2 2(12,10X))
KVARY=0
D0 21 K=1+»KCHNL
LAMP=NUMC (K)
KNR(K)=0
KDR(K)=0
Do 21 I=1.LAMP
KVARY=KVARY+NRATOR (K¢ 1)
KVARY=KVARY+NDENOM (K¢ 1)
KNR(K)= KNR(K) + NRATOR(KsI) + 1}
21 KDR(K)= KDR{K) + NDENOM(K,I) + 1
00 29 I=1,KCHNL
29 IF(KONT(I)+EQe¢1)KVARY=KVARY+1
DO 42 K=1,KCHNL
LNC= KNR(K)
LDC= KDR(K)
READ(5¢50) (XCOMN(K»I)»IZ12LNC)
42 READ(S5¢50) (YCOMN(K, 1) »I=1,LDC)
50 FORMAT(8F10.5)
60 FORMAT(*0*r6Xr *INITIAL COMPENSATOR COEFFICIENTS?)
WRITE(6060)
DO 72 K=1+KCHNL
LNCZKNR (K)
LDC= KDR(K)
WRITE(6062)K
62 FORMAT('0'r5Xe *CHANNEL NO.?»I202X» *COMPENSATORS = FACTORED FORM?)
WR1TE(6,68)
68 FORMAT(*0'»5X» *NUMERATOR COEFFICIENTS')
WRITE(6+70) (XCOMN(KeI)»IZ1,LNC)
WRITE(6069)
69 FORMAT(*0'r5Xr 'DENOMINATORS COEFFICIENTS')
72 WRITE(6¢70) (YCOMN(KeI)eI=1,LDC)
70 FORMAT(* 'r15X»10F10,5) _
C MODIFICATION OF FREQ. RESP. INFOR. BY CONTANT COMPENSATOR
00 135 J=1+KIFM
135 READ(S5+140) (OMEGA(I)1GRA(J»I)»GIACJrI)»I=1,KPOINT)
140 FORMAT(9F8.5)
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148
150

149
190

195
200
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IF(KIFMeGE+KCHNL)GO TO 150

K= KIFM + 1

D0 148 J=K+KCHNL

DO 148 I=1+KPOINT

XV= OMEGA(I) * 6.2831853

GRA(JrI)= =OMEGA(I) * XV * GIA(J=1r1)
GIA(JrI)= OMEGA(I) % XV * GRA(J=1,I)
CONTINUE

DO 149 J=1+KCHNL

DO 149 I=1+KPOINT

GRA(JrI)= GRA(JU»I) = GAIN(J)

GIA(JrI)= GIA(JrI) x GAIN(J)

CONTINUE ,
DATA STEP+KHOP»SML2PSQL»SBC2/1.,0E=02¢0¢04091.0E+20+,0.0/
Ii=0

12=0

DO 195 K=1rKCHNL

I1= KNR(K) + I1

I2= KDR(K) + I2

LOX= KSTART

CONTINUE

LPRESV=KVARY

NM=0 ‘

C EVALUATION OF VARIABLE COMPENSATOR AT CHOSEN FREQS.

204
205

DO 210 K=1+KPOINT
GR(K)=0,0

GIl(K)=0,0

XV=OMEGA(K) *6.2831853
DO 209 I=1+KCHNL

KCoMP= NUMCI(I)

LNOT=0

KNOT=0

GCR(IeK)= 1.0

GCI(I/K)= 0.0

DO 208 Ju=1/KCOMP

NTR= NRATOR(I.J)+1

NTO= NDENOM(Ird)+1

DO 204 M=1/NTR

CNUM(M)= XCOMN(I M+KNOT)
DO 205 M=1sNTD

COOM(M)= YCOMN(I+M+LNOT)
KNOT= KNOT 4+ NTR

LNGT= LNOT + NTD

K2= NTR-1

K3= NTD-1

CALL POLFV{(CNUM¢K29XVeCNR?CNI)
CALL POLFV(CDOMsK3yXVeCORICDI)
CD= CDRx*2 + CDI*x%x2

ACR=GCR(I¢K)

ACI= GCI(IrK)
ACOMR= (CNR * CDR + CNI * CDI)/CD
ACOMI=(-CNR * CDI + CNI * CDR)/CD

&
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GCR(I+K)= ACR * ACOMR = ACI * ACOMI
208 G6CI(IrK)= ACR * ACOMI + ACI * ACOMR
GCOMR(I+K)= GRA(I+K)*GCR(IrK) = GIA(I»K)*GCI(IrK)
GCOMI(IIK)I= GRA(I/K)I*GCI(IsK) + GIA(IrK)*GCR(I¢K)
GR(K)= GR(K) + GCOMR(I*K) '
209 GI(K)= GI(K) + GCOMI(IrK)
210 CONTINUE
DETERMINATION OF GAIN MARGINS POINTS BETWEEN F1 AND F2
CALL GAINMG(GR+GI+KPOINT/NM¢F10+F11sKPTSsSTBM»OMEGA)
NGMS=NM :
SETTING DESIRED STABILITY RADII OF GeMe'S
KPM=NM+1
IF(NM«EQe0)GO TO 213
DO 212 I=1+NM
TYPE(I)= 'G?
KWHICH=KPTS(I)
FREHZ=0OMEGA (KWHICH)
IF(FREHZ+LE.F1)RQ(])=R1
IF(FREHZ«GT,F1)RQ(I)=R2
IF (FREHZ +GE.F2)RQ(I)=R3
212 CONTINUE
213 CONTINUE
DETERMINATION OF P.M. BETWEEN F3 AND F4
CALL PHASEM(GRsGI+KPOINTYNMyF12+/F13+KPTS»STBM?»OMEGA)
IF (NMsLT«KPM)GO TO 215
SETTING DESIRED STABILITY RADII OF PeMe'S
00 214 I=KPMsNM
TYPE(I)= 'P?
KWHICH=KPTS(I)
FREHZ=OMEGA (KWHICH)
IF(FREHZJ.LE.F3)RQ(I)=R4
IF(FREHZ+GT«F3)RQ(I)=RS
IF(FREHZ «GE.F4)RQ(])=R6
214 CONTINUE
KPM=NM+1
215 CONTINUE
IF(NM+EQ.0)GO TO 221
KLAST=NM
DO 220 I=1/+KLAST
IF((I.LE+NGMS) « AND. (INCGMS.EQ.1))GO0 TO 219
IF((I+GT+NGMS) . AND. (INCPMS,EQ.1))GO TO 219
GO To 220
219 KPM=KPM+1
NM=NM+1
KPTS (NM)=KPTS(I)
STBM(NM)=STBM(1)
R@(NM)=RQ (1)
TYPE(NM)='S!
220 CONTINUE
221 CONTINUE
KSTBM=KpPM
RPT=1.0



NSG=1

FAGMIN=0,0
DETERMINATION OF STABILITY MARGINS

CALL SRMINS(GRsGI+KPOINTNMeRPTINSGrFAMINsKPTS»STBM»OMEGA)
SETTING DESIRED STABILITY MARGINS

IF(NMJLT«KPM)GO TO 216

DO 230 I=KPMe!NM

TYPE(I)= 'S¢

KWHICH=KPTS(1)

FREHZ=OMEGA (KWHICH)

IF(FREHZ«LE.FSIRQ(I)=R7

IF(FREHZ +GT.FS)RQ(]I)=R8

IF(FREHZ +GE.F6)IRQ(]1)=R9
230 CONTINUE _
CHECKING TO SEE IF ANY P.Me'Sr GeMe'Ss» OR S.M.'S ARE EQUAL
IF THERE RESULTS SOME THAT ARE EQUAL ONLY THE FIRST IS RETAINED.

DO 228 LB=2/KSTBM

DO 228 I=KSTBMsNM

IF(KPTS(LB=1) «NEKPTS(I))GO TO 228

NM=NM~=1

D0 226 L=I'NM

KPTS(L)= KPTS(L+1)

STeM(L)= sTBM(L+1)

Ra(L)= Ra(L+1)
226 TYPE(L)= TYPE(L+1)
228 CONTINUE

KPM=NM+1
216 CONTINUE

KMIN=NM

RPT=0.0

NSG==1

FQMIN=FMIN :
DETERMINATION OF ATTENUATION MARGINS

CALL SRMINS(GR+GIrKPOINTeNMIRPTINSGrFQMIN,KPTS»STBM»OMEGA)
SETTING DESIRED ATTEN. MARGINS

IF(WMesLT+KPM)GO TO 217

DO 232 I=KPMsNM

TYPE(I)= 'Ar

KWHICH=KPTS(I)}

FREHZ=OMEGA (KWHICH)

IF(FREHZ.LE.F7)RQ(])=R10

IF(FREHZ6T.F7)RQ(I)=R11

IF(FREHZ+GE.F8)RQ(I)=R12
232 CONTINUE
217 CONTINUE -

SBC1=R1
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DETERMINING SMALLEST STABILITY MARGINS OF PRESENT ITER. AND ALL ITER.

SMiL1= 100.0
DO 290 I=1+KMIN
IF(STBM(I)+GT+SMLL)GO TO 288
SML1= STBM(I)

288 CONTINUE
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IF(STBM(I)«GT+SBC1)GO TO 290
SBC1= STBM(I)
290 CONTINUE
IF(SBC2.GE+SBC1)G0 TO 298
SBC2= SBC1
IBEST= LOX
DO 292 K=1+KCHNL
LNC= KNR(K)
LDC= KDR(K)
" D0 .291 I=1+LNC
291 BCOMN(K,I)= XCOMN(K'I)
D0 292 1=1LDC
292 BCOMD(K»I)= YCOMN(K,I)
298 CONTINUE
CHECKING SATISFACTION OF SYSTEM REQUIREMENTS
DO 320 1=1/NM
PORM= 1,0
IF(I.GTKMIN)PORM==~1.0
310 IF((STBM(I)-RG(I))*PORM)350'320'320
320 CONTINUE
WRITE(6,330)
" 330 FORMAT( 015X vxkkxk ALL SYSTEM REQUIREMENTS HAVE BEEN MET #%%k%xx?
1)
340 CONTINUE
CALL OTPT1(STBM+»OMEGA+KPTS»NMe XCOMN, YCOMN KMINsRQrLOX o KCHNL ¢ NUMC»
1 NRATOR!'NDENOMsPRX*PRY»I1lreI2)
WRITE(6:341) IBEST
341l FORMAT(10*»5Xr ***xxkx BEST COMPENSATORS wWITH RESPECT TO STABILITY =*
1kxxx1//6X» "OCCURRED ON STEP'»I4»2Xrs *AND THEIR COEFFICIENTS ARE:?)
CALL MULOUT (KCHNL » NUMC ¢ NRATOR »NDENOM»KNR ¢ KDR»BCOMN»BCOMD)
WRITE(6,345) SBC2
345 FORMAT('0'»21X» *SMALLEST STABILITY MARGIN FOR THE BEST COMPENSATOR
=t9F10.8)
WRITE(6,347)
347 FORMAT(10*e5X» *%%xkx COMPENSATORS AND COMPENSATED FREQUENCY RESPON
1S5E AT THE LAST ITERATION PERFORMED ARE AS FOLLOWS *x%%xx?)
CALL MULOUT (KCHNL » NUMC ¢ NRATOR ¢ NDENOM¢ KNR»KDR ¢ XCOMN» YCOMN)
WRITE(6)346)
‘346 FORMAT('0*»9X» "COMPENSATED FREQUENCY RESPONSE'//10X» '"FREQUENCY?,
1 2X e *"MAGNITUDE '+ 3X+ *ANGLE ")
DO 349 I=1+KPOINT
GMTE= SQRTI(GR(I)*%2 + GI(I)*%x2)
AGLE= ATAN2(GI(I)»GR(I))I*57,3
WRITE(6,348) OMEGA(I)»GMTE»AGLE
348 FORMAT(Y "27X+F10e¢521XrF10.5¢1XsF10.5)
349 CONTINUE
STQP
350 CONTINUE
STEP SIZE SELECTING.
IF(LOXJEQKQUITIWRITE(6,351)
351 FORMAT('0'r5Xr tkxkex TERMINATION REASON = MAXIMUM ITERATIONS *#xkx
1)
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IF (LOX+EQeKQUIT)WRITE(6+400)STEP
IF(LOX+EQeKQUIT)IGO TO 340
IF(LOX+EQ.KSTART)IGO TO 354
ADD=0.,0
MAD=0
PORM=1+0
DO 355 I=1rNM
IF(l.GT+KMIN)PORMZ~1,.0
IF (PORMx (STBM(I)=RG(I)).GE+0.0)G60 TO 355
D0 352 J=1rNML
352 IF(KPTS(I)EQeKACT(U)IGO TO 353
MAD=MAD+1
GO To 358
353 CONTINUE
IF IT IS DESIRED TO HAve ALL CONSTRAINTS TO BE IMPROVED AT EVERY
ITERATION REMOVE THE C FROM COLUMN 1 OF THE FOLLOWING CARD
IF(PORM% (STBM(I)=SML(I))eLTe~1.0E~05)G0 TO 360
ADD=ADD+PORM* (STBM(I)-SML (J))
355 CONTINUE
IF (MADEQ.NML)ADD=1,0
IF(ADD+LE.0,0)60 TO 360
354 CONTINUE
60 TO 371
360 STEP= STEP/2.0
IF(STEPLT«STPMIN JWRITE(6+1365)STPMIN
365 FORMAT('0*»5Xr *k*xkx TERMINATION REASON = STEP SIZE IS LESS THAN ¢
1 FLO592Xp vkkkkky)
IF(STEP.LTSTPMIN )60 TO 340
LOX= LOX - 1
60 TO 450
371 STEP=1.41416 * STEP
373 CONTINUVE
SML2=SML.1
IF(STEP.GT+STPMAX)STEP= STPMAX
OUPUT CONTROL .
IF(KHOP.GT+1)GO TO 410
KHOP=KPRINT
WRITE(6,400) STEP
400 FORMAT(10*» 15X» 'PRESENT STEP SIZE ='+F10.7)
CALL OTPTL(STBMrOMEGA KPTS»NMsXCOMN» YCOMN¢KMIN?RQrLOX ¢ KCHNL ¢ NUMC »
i NRATOR ¢ NDENOMePRXPRY»I1,12)
60 TO 420
410 KHOP= KHOP ~ 1
420 CONTINUE

C SELECTING ACTIVE CONSTRAINTS

K=0
D0 411 I=1sNM

IF(I-1+EQeKMIN)KMINSK

PORM=1.0

IF(I,6T+KMIN)PORM==140

IF (PORMXSTBM(1) +GT.PORMARQ(I))GO TO 411
Kak+1
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KPTS(K)= KPTS(I)
TYPE(K)= TYPE(I)
SML (K)= STBM(I)
KACT(K)= KPTS(I)
411 CONTINUE
NM=K
NML=NM .
C CALCULATION OF GRADIENTS OF ACTIVE CONSTRAINTS
RPT=1.0
CALL PARCLT(XCOMNs»YCOMN)GR¢GIr»OMEGA»NMrNRATOR»NDENOM»
i KCHNL #» NUMC  KONT » GCOMR 1 GCOMI» GrPPTLSN»KPARC'KP TS KNR?KDR)
C SET DOT PRODUCT VECTOR
DO 422 K=1¢NM
422 WEIGHT(K)=1l.0
C CALCULUTE DIRVECTIONAL VECTOR
LRE=0
KRE=0
423 IF(NMeGTLPRESVIWRITE(6,415)
IF (NMeGTLPRESV)IGO TO 340
CALL DIRVEC(G/NMsKPARC'DVIWEIGHT)
415 FORMAT(10* 95X *x%kkk TERMINATION REASON = NOr OF ACTIVE CONSTRAINT
1S IS GREATER THAN THE NO. OF ALLOWABLE VARIABLES **x%x?)
D0 426 I=1r11
426 PRx(1)= DvV(I)
D0 427 I=1r]12
427 PRY(I)= Dv(Ii+D)
IF(KRE+EQ+1)GO TO 433
C CKECKING POSSIBLE NEGATIVENESS OF ANY COMPENSATOR COEF.
IF(LRE+GE.I11+12)G0 TO 433
LRE=LRE+1
K2=0
K3=0
DO 431 K=1¢KCHNL
LNC=KNR (K)
LDC=KDR(K)
DO 429 I=1isLNC
K2=K2+1
IF(XCOMN(K?I)+GT+1,0E=-05)G0 TO 429
IF(PRX(K2)+GE+0.0)G0O TO 429
LPRESV=LPRESV=1
KRE=1
DO 428 J=1+/NM
428 G(urK2)=0,0
429 CONTINUE
D0 431 1=1.LDC
K3zK3+1
IF(YCOMN(K?I) «GT41,0E=05)G0O TO 431
IF(PRY(K3)+GE«+0,0)G0 TO 431
LPRESV=LPRESV~1
KRE=1
DO 430 J=1+NM
430 G(JrIl+K3)=0,0



431
433

CONTINUE
IF(KRE.EQ.I)GO TO 423
CONTINUE
PSQ@= 0.0

. DO 438 1I=1r]11

438

440

4ée

464

450

4e7

468
465

PX(I)= pPRX(I)

PSG= PSQ + PX(I)*x%x2
DO 440 I=1r12
PY(I)=PRY(I)

PSG= PSQ + PY(]I)*x%xg
PMG= SQRT(PSQ)
PSglL= PSQ

DEL= STEP/PMG

DO 462 K=1+KCHNL
LNC= KNR(K)

DO 462 I=1+LNC
COTN(KrI)= XCOMN(K,I)
DO 464 K=1+KCHNL
LDC= KDR(K)

DO 464 1=1+LDC
COTD(KrI)= YCOMNI(K,I)
GO TO 465

DEL= DEL/2.0

DO 467 K=1+KCHNL
LNC= KNR(K)

DO 467 I=1,LNC ,
XCOMN(Ke I)= COTN(K, )
DO 468 K=1+KCHNL
LDC= KDR(K)

DO 468 I1=1.LDC
YCOMN(KeI)= COTD(KsI)
CONTINUE

KKK=0

DO 470 K=1+KCHNL
LNC= KNR(K)

DO 470 1=1+LNC "

- KKK= KKK+1

470

XCOMN(K,I)= XCO&N(KrI) + DEL * PX(KKK)
IF(XCOMN(K?I)eLT.0, O)XCOMN(KDI) 0.0

- KKK=0

490
500

00 490 K=1+KCHNL
LDC= KDR(K)

DO 490 I=1rLDC

KKK= KKK+1

YCOMN(KsI)= YCOMN(K»I)+ DEL * PY(KKK)
IF(YCOMN(K?I)eLTe0.,0)YCOMN(KrI)=0,0
CONTINUE

LOX= LOX + 1

G0 To 200

END.
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SUBROUTINE PARCLT(XCOMN, YCOMN»GOR?»GOI »OMEGA NFREQ+NRATOR?» NDENOM,
1 KCHNL * NUMC?»KONT » GCOMR» GCOMI ¢ G e PPT ¢ LSN¢NPARCrKPTS»KNR?KDR)

PROGRAM FOR

CALCULATING THE CHANGE OF A FREQUENCY :RESPONSE WITH

RESPECT TO A CONPENSATOR COEFFICIENTS

DEFINITIONS

XCOMN(Ird)
YCOMN(I J)
GOR(I)
G0I(I)
OMEGA(])
NFREG
NRATOR(I,J)
NDENOM (I J)
KCHNL
NUMC(I)
KONT(I)
GCOMR(I,J)
GCOMI(IJ)
G(IrJ)

2

L

OF 1/0 VARIABLES

~NUMERATOR COEFSe. OF COMPENSATOR IN I-TH CHANNEL
-DENOM. COEFS. OF COMPENSATOR IN I-TH CHANNEL
«I=-TH REAL PART OF OPEN LOOP FREQ. RESP.

=I-TH IMAG, PART OF OPEN LOOP FREQ. RESP.
=1=TH FREQUENCY RESPONSE POINT

=NUMBER OF MARGINS TO BE IMPROVED

=NUM. ORDER OF J=TH COMP. IN I=-TH CHANNEL
~DEN. ORDER OF J=TH COMP. IN I~=TH CHANNEL
=NUM., OF CHANNELS

=NUM, OF COMPS. IN I=TH CHANNEL

=GAIN CONTROL NUM. FOR I-TH CHANNEL
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=REAL PART QOF J=TH CHANNEL COMP. FREQ. RESP. AT J=TH FREQ.

=IMAGe. PART OF J=TH CHNL. COMP. FREQ@e. RESP. AT J=TH FREQ@.
=J=TH PARTIAL OF I~TH FREQ.
-NEG. OF POINT FOR WHICH PARTIALS ARE DESIRED

=NO. OF POINTS TO TREAT AS STABILITY MARGINS(THE REMAINING

ARE CONSIDERED AS ATTENUATION MARGINS)

DIMENSION €(10),D(10)sE(10),GR(50)+GI(50)»OMEGA(999)rY(10)+X(10)s
1 NUMC(20) rKONT(10)+6(20¢99) »GOR(999) »G01.(999) +NRATOR(10,20)
2 NDENOM(10+20) yGCOMR(5¢999) ¢ GCOMI (51999) + PFX1(5+50)

3 PFY1(5:50)r KPTS(1)rXCOMN(10,50) »YCOMN(10s50) »KNR(1)sKDR(1)
DOUBLE PRECISION G

IMPLICIT REAL*8(A=F,P=W)

REAL*4 XY XVoCNR2CNI»XCOMN» YCOMN»CDR#CDI

DIMENSION PPT(4)s LSN(4)

COMMON TYPE(50)

INTEGER
COMPLEX

TYPE
P.PPT

DO 140 J=1+NFREQ .
IF(TYPE(J) +EQe'G ')} P==~PPT(1)
IF(TYPE(J) «EQe 'P")P==PPT(2)
IF(TYPE(J) «EQe 'S ) P==PPT(3)
IF(TYPE(J) eEQe'A')P==PPT(4)
IF(TYPE(J) +EQe'G')SGN= LSN(1)
IF(TYPE(J) «EQe "PY)ISGN= LSN(2)
IF(TYPE(J) sEQe 'S')SGN= LSN(3)
IF(TYPE(J) «EQs'A')SGN= LSN(4)

KWHICH=

KPTS (D)

XV= OMEGA(KWHICH) * 6.2831853
‘DO 130 L=1+KCHNL
NCOMD= NUMC(L)

KNOT=0
LNOT=0

I0P= KONT(L)



20

‘30

40

50

60

70

D0 130 N=1/NCOMD
IF(N.GT.1)I0P=2

N1z NRATOR(L,N) + 1

M1z NDENOM(L,N) + 1
D0 5 LP=1/N1

X(LP)= XCOMN(L,LP+KNOT)

DO 6 LP=1,M1

Y(LP)= YCOMN(L/»LP+LNOT)

K2=N1~-1

K3=M1-1

CALL POLFV(XyK2¢XV2CNR?CNI)

CALL POLFV(YsK3¢XVsCDReCDI)

RD= CNRx%x*2 + CNI*x2

RR= (CDR*CNR+CDI%*CNI)/RD
RI=(=CDR*CNI+CDI*CNR)/RD

GR(J)= GCOMR(L/KWHICH)*RR = GCOMI(L)KWHICH)=xRI
GI(J)= GCOMR(L+KWHICH)*RI + GCOMI(L KWHICH)x*RR
A= REAL(P)+GOR(KWHICH)=GCOMR(LsKWHICH)

B= AIMAG(P)+GOI(KWHICH)=-GCOMI (L yKWHICH)
FREQ=1.0

KSKIP=1

DO 40 I=1,N1

KUL1=(=1)x*x((I+1)/2)

KuLe=(=1)x*((I+2)/2)

FULLI=KULL

FUL2=KUL2 :
IF(KSKIP=1)20020+30
C(1)==GR(J)*FREG*FUL2
D(1)==GI(J)*xFREg*FUL1

KSKIpP=2

GO TO 40

C(I)==6GI(J)xFREG*FUL2
D(1)==GR(J)*xFREG*FUL1

KSKIP=1

FREQ= FREQ*OMEGA (KWHICH)*6.,2831853

FREQ= 1,0

DO 50 I=1,M1

KMULS (=1) %% ( (I+1)/2)

EMUL=KMUL |

E(I)= =FREQ * EMUL

FREQT FREQ * OMEGA(KWHICH)*6.2831853
FNA1=040

FNA2=040

DO 60 I=1sN1

FNAL=FNAL+C(T) %X (1)
FNA2=FNA2+D (1) *X(I)
FD2=0.0

KI=z 2 * ({(K3+1)/2)

DO 70 I=2/KIs2
FD2=FD2+E(I)*Y(]I)
FD1=0.0 _
KE= 2 * ((K3+2)/72) - 1
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80

90

100

110

130

135

139

140

145

149
150

0O 80 I=z1l/KEe2

FD1=FD1+E(I)*Y(])

FNiz FNAlL + FD1 * A - FD2 * B
FNe= FNA2 + FD2 * A + FD1 * B
FD=FD1*x2+FD2%**2
FNSFN1**%2+FN2% %2

FYEz (FD *(A * FN1 + B * FN2) = FN * FD1)/ FD*x*x2
FYO= (Fp*(=B * FN1 + A x FN2) = FN % FD2)/ FD*x2
FX1=FN1/FD

FX2=FN2/FD

PFXL(LeKNOT+1)= 040

DO 90 I=1+KEs2

PFYL(LI+LNOT)Z FYE * E(1) % SGN
CONTINUE

DO 100 I=2rKIr2

PFYL1(LeI+LNOT)= FYQO * E(I) x SGN
CONTINUE
IFC(IOPCEQe2)PFYL(L/LNOT+1)= (.0
00 110 I=2!N1

PEXLI(Le I+KNOTIZ(FX1xC(I) + FX2%D(1)) * SGN
CONTINUE

KNOT= KNOT + N1

LNOT= LNOT + M1

CONTINUE

KLAD=0

DO 135 IX=1r,KCHHhL

KNOT= KNR(IX)

DO 135 LX=1,KNOT

KLAD=KLAD+1

G(lUrKLAD)= PFX1(IXsLX)

DO 139 IX=1,KCHNL

LNOT= KOR(IX)

00 139 LX=1,LNOT

KLAD=KLAD+1
GlJrKLAD)I=PFYL(IXoLX)

CONTINUE

NPARC=KLAD

D0 150 J=1+NFREG

SUM=0.0

DO 145 IZ1+NPARC
SUM=SUM+G(Jr 1) *G(Jr 1)

SUMz= DSGRT(SUM)

00 149 I=1/NPARC

G(urI)= G(JrI)/SUM

CONTINUE

RETURN

ENO

SUBROUTINE PHASEM(GR'GIrKPOINTONM'FQMIN'FGMAX'KPTSDSTBMIOMEGA)
DIMENSION GR(1)eGI(1) KPTS(1)»STBM(1)OMEGA(1)
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SUBP
DEF

GR
Gl
KPG
OME
NM
KPTS
STB
FamM
FaM

30

40
50

suBP
DEF

6R
6l
KPO
OME
NM
KPTS
STB
FaM
Fawm

ROGRAM FOR CALCULATING PHASE MARGINS
INITIONS OF 1/0 VARIABLES

-ARRAY OF OPEN LOOP TRANSFER FUNCTION REAL PARTS
=ARRAY OF OPEN LOOP TRANSFER FUNCTION IMAGINARY PARTS

INT=NO+ OF POINTS
GA =ARRAY OF FREQS.
=COUNTER
-FREQUENCY NOSe. WHERE MARGINS OCCUR
M  «STABILITY MARGINS OF MARGINS
IN =LOWER FREQe FOR MARGIN DETECTION
AX = UPPER FREQ. FOR MARGIN DETECTION
P=i.0
DO 50 I=1+KPOINT
S0z GR(I)*%2 + GI(])*%2
52250'1 00
IF(I.EG.,1)51=52
IF(OMEGA(I) oLTFGMINIGO TO 40
IF(OMEGA(I) «GT.FGMAX)RETURN
IF(ABS(S2) «LTe1.0E=~20)60 TO 30
SGhN=S2/ABS(S2)
IF(S1*SGN.GT.0.0)60 TO 40
Il1=I-1
IF(ABS{S2) s LT«ABS(S1))I1=]
NM=NM+1
KP1S(NM)=1I1
S3z (PHGR(IL1) ) *x2+GI(I1)*x2
STeM(NM)= SQRT(s53)
S1izs2
CONTINUE
RETURN
END

SUBROUTINE GAINMG(OGRrGLyKPOINT NMsFQMINsFQMAX+KPTS»STBM»OMEGA)
DIMENSION GR(L)»GI(L) v KPTS(1)STBM(1)»OMEGA(L)

ROGRAM FOR CALCULATING GAIN MARGINS

INITIONS OF 1/0 VARIABLES

-ARRAY OF OPEN LOOP TRANSFER FUNCTION REAL PARTS
=ARRAY OF OPEN LOOP TRANSFER FUNCTION IMAGINARY PARTS

INT=NOe OF POINTS
GA =ARRAY OF FREQS.

=COUNTER

-~FREGUENCY N(0Se. WHERE MARGINS OCCUR
M  =STABILITY MARGINS OF MARGINS
IN =LOWER FREQ. FOR MARGIN DETECTION
AX = UPPER FREQ. FOR MARGIN DETECTION
P=1.0
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30

40
50

DO 50 I=Ll+KPOINT

S2=6I(1)

IF(I1.EQ.1)51=52

IF(OMEGA(I) .LT.FAMINIGO TO 40
IF(OMEGA(I) sGT.FGMAX)RETURN
IF(ABS(S2) «LT«1,0E~20)60 TO 30
SGN=S2/ABS(S2)
IF{S1%SGN.GT.0.0)GC TO 40

CR= GR(]I)

IF(CR«GE«0+0)G0O TGO 40

I1=1-1
IF(ABS(S2) oL TeABS(S1))IL=1
NMznNM+1

KPTS(NM)=I1

S3= (P+GR(I1) ) *%2+GI(I1)*%x2
STEMINM)= SQRT(S3)

S1=s2

CONTINUE

RETURN

END

SUBROUTINE SRMINS(GReGI/KPOINT
DIMENSION GR(1)eGI(1)KPTS(1)y

tNMs Py NP FQMIN)KPTS»STBM OMEGA)
STBM(1) »OMEGA(L)

SUBPROGRAM FOR DETERMINING THE MINMUNS OF THE OPEN LOOP FREGUENCY

RESPONSE WITH RESPECT To THE =
OPEN LOOP REQUENCY RESPONSE

DESCRIPTION OF I/0 VARIABLES

KPTS

GR - VECTOR OF REAL PARTS
Gl = VECTOR OF IMAGINARY P
KPQINT =~ NUMBER POINTS oF THE
OMEGA = CORRESPONDING FREQUEN

~FREQUENCY NOS. WHERE MARGI

FOMIN «~MINIMUM FRGe CONSIDERED

-p
N

10
20
30

~POINT WeReTe A MAXe OR MIN
-DETERMINES WHETHER A MAX.,
ASNI=0.0
51z0.0
DO 50 I=1+KPOINT
IF(OMEGA(I) JLESFQMINIGO TO 50
52z (P + GR(I))*x*x2 + GI(I)*%2
ASN2=52-S1
CONTINUE
IF(ASN2xN)10+s50+10
IF (ASN1%ASN2)20+40,40
IFCASNIxN)30»40040
NMzNm+1
1= 1 ~1
KPTS(NM)=I1
SToM(NM)= SQRT(S1)

1 POINT WHEN GIVEN POINTS ON THE

OF OPEN LOOP FREQUENCY RESPONSE
ARTS OF OPEN |OOP FREQ. RESPONSE
OPEN LOOP FREQ. RESPONSE GIVEN
C1ES OF CHOSEN POINTS

NS OCCUR

« IS DESIRED
OR MINe IS DETERMINED
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40 Sl=s2
ASN1= ASN2
50 CONTINUE
RETURN
END

SUBROUTINE DIRVEC (GyNM¢KPARC DV WEIGHT)
DIRECTIONAL VECTOR PROGRAM

DEFINITIONS OF 1/0 VARIABLES

G -MATRIX WHOSE ROWS CONTAIN THE GRADIENT VECTORS OF THOSE
STABILITY MARGINS ONLY CONSIDERED PERTINENT

NM -NUMBER OF STABILITY MARGINS CONSIDERED PERTINENT

WEIGHT=WEIGHTING FACTOR VECTOR

DIMENSION G{(20,99)y» A(30+30)r WEIGHT(1),
/ AI(30030) X{(30), DV(30), Y(30)
IMPLICIT REAL*8(A=H,0~2)
DO 200 K=1¢NM
Y{(K)= WEIGHT(K)
DO 200 J=KrNM
SUM= 0.0
DO 150 I=1+KPARC
150 SUmM= SUM + 6(Jr1) % G(KeI)
A(urK)= SUM
A{KrJ)= SUM
200 CONTINUE
IF(NMeGTe1)GO TO 230
AT(1,1)= 1.0/A(101)
X(1)= WEIGHT(1) * AI(1r1)
GO0 TO 310
230 CONTINUE
CALL MATINV(A'NMeAI»IER)
IF(IER+EQ.0)GO TO 300
WRITE(6,250)
250 FORMAT(10'¢15X» *THE PARTIALS ARE NOT LINEARLY INDEPENDENT.
/HE PROGRAM IS TERMINATED.')
SToP
300 CALL MATMUL (NMeAIeNMIYrlrX)
310 CONTINUE
DO 450 I=1+KPARC
SUM= 0.0
00 400 J=1rNM
400 SUM= SUM + G(JrI) % X{J)
450 DV(I)= SUM
690 RETURN
END

SUBROUTINE MATINV(ZsNeYsIER)
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100

D0 50 I=1eKPOINT
S2=6I1(1)
IF(I.,EQ.1)S1=52
IFCOMEGA(I) JLTFGMINIGO TO 40
IF(OMEGA(I) +GT+FAMAX)RETURN
IF(ABS(S2)+LT«1.,0E=20)60 TO 30
Sen=S2/ABS(S82)
IF(S1%SGN.GT.0.0)G0 TO 40

30 CR= GR(])
IF(CR.GE+040)GO TO 40
Il1-I-1
IF(ABS(S2) oL TABS(S1)) I
NM=nM+1
KPTS(NM) =11
S3= (P+GR(I1) ) *x2+GI1(I1)*x%x2
STUM(NM)= SQRT(S3)

40 Sl=s2

50 CONTINUE
RETURN
END

SUBROUTINE SRMINS(GReGI+KPOINT NMIPeNIFQMIN, KPTSeSTBMyOMEGA)
DIMENSION GR(L)»GI(1)KPTS(1)STBM(1) OMEGA(L)

SUBPRGGRAM FOR DETERMINING THE MINMUNS OF THE OPEN LOOP FREQUENCY
RESPONSE WITH RESPECT To THE =1 POINT WHEN GIVEN POINTS On THE
CPEN LOOP REQUENCY RESPONSE

DESCRIPTION OF I/0 VARIABLES
GR = VECTOR OF REAL PARTS OF OPEN LOOP FREQUENCY RESPONSE
Gl = VECTOR OF IMAGINARY PARTS OF OPEN L.OOP FREQe. RESPONSE
KPOINT = NUMBER POINTS oF THE OPEN LOOP FREQ. RESPONSE GIVEN
OMEGA - CORRESPONDING FREQUENCIES OF CHOSEN POINTS

KPTS ~FREQUENCY NOS. WHERE MARGINS OCCUR

FQMIN =MINIMUM FRQ. CONSIDERED

-P =POINT WeReT+ A MAXe OR MINe IS DESIRED

N -DETERMINES WHETHER A MAX. OR MINe IS DETERMINED
ASNI=0.0
51=0.,0

DO S0 I=1+KpPOINT
IF(OMEGA(I) ,LE.FQMIN)IGO TO 50
S2z (P + GR(I))**x2 + GI(I)*%2
ASn2z=s2-S1
5 CONTINUE
IF (ASN2%N)10,50,10
10 IF(ASN1xASN2)20+40,40
20 IF(ASN1xN)30,40,40
30 NMz=iNM+1
I1=1 -1
KPTS(NM)=I1
SToM(NM)= SQRT(S1)
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MULTIPLIES (A) * (B)
A IS AN NR X N
B 1S AN N X NC
X 1S AN NR X NC

DO 4 I=1/NR
4 X(1) =
00 5 I=1sNR
DO 5 K=1+NC
DO 5 JU=1rN
S X(I)= X(I) + A(I,J) * B(J)
RETURN
END

SUBROUTINE POLFV(FwsKeXeFREAL/FIMAG)
PROGRAM FOR EVALUATING A POLYNOMIAL AT AN IMAGINARY FREQUENCY

DEFINITIONS OF I/0 VARIABLES

Fw -VECTOR POLYNOMIAL COEFFICIENTS
K -0RDER OF POLYNOMIAL
X -FREQUENCY TO BE EVALUATED AT
FREAL -REAL PART OF FiW(JX)
FIMAG =IMAGINARY OF Fii(JX)

DIMENSION FW(1)

KEVEN=(K+2) /2

KOUD=(K+1)/2

YZ1.0

FREAL=0.0

00 10 1=1,KEVEN

LegxI~-1

FREAL= FREAL + Fw(L)*Y
10 YS=YxX*X

FIMAG:0.0

IF(KODD.EQ.Q)GO TO 30

Y=X

DO 20 1=1.KODD

L=2*1

FIMAG= FIMAG +. FW(L)xY
20 Y==Y%X*X
30 RETURN

END

SUBROUTINE OTPTL1(STBM»OMEGA+KPTS»NMeXCOMN» YCOMNeKMINIRQ»LOX s KCHNL »
1 NUMC »NRATOR »NDENOM+sPRXsPRYr11v12)

DIMENSION STBM(1)rOMEGA(1)»KPTS(1) s XCOMN(10+50) ¢ YCOMN(10+50),RQ(1)
i #PRX{1) #PRY (1) +NUMC (1) rNRATOR(10+20) »NDENOM(10+20)

DIMENSION TYPE(S0)

COMMON TYPE
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INTEGER TYPE

Cc
C SUBFPROGRAM FOR THE OUTPUT OF INFORMATION CALCULATED
C
Iop=1
WRITE(6+10) LOX
10 FORMAT(r0'r2SX» *ITERATION NO. '»1I4)
DO 110 I=1+NM
KwH= KPTS(I)
FREQ= OMEGA (KWH)
IF(I.EGeKMIN+1)GO TO S0
IF(I.EQ.1)G0 TO 70
GO0 TO 9¢
50 WRITE(6&+60)
60 FORMAT('0'»25X» ATTENUATED FREGQUENCY INFORMATION'//)
60 T0 90
7G6 WRITE(6080)
80 FORMAT(*0'+25Xs 'RELATIVE STABILITY INFORMATION'//)
90 CONTINUE
WRITE(6,100) I, STEM(I)» FREQe RQ(I)e TYPE(I)
100 FORMAT(r '22Xr "MARGIN RADIUS NO. '¢2I2¢'='9F10+5¢5Xr *FREQUENCYZ?,
1 FLOeS521Xp*HZ2' 95X, 'DESIRED MARGIN='+F10.5¢5X» *MARGIN TYPE='riX»
e Al)
110 CONTINUE
DO 104 I=1+KCHNL
VRITE(6,102) I
102 FORMAT(v0"»25Xs *CHANNEL NOJ'»I2¢' COMPENSATORS')
L=numC (1)
Lx=1
LYy=1
KX=0
KY=0
DO 104 IX=1,L
KX=KX + NRATOR(I«IX) + 1
KYzKY + NDENOM(I»IX) + 1
WRITE(6,106) (XCOMN(IeN) #N=LXeKX)
WRITE(6,107) (YCOMN(IoN) N=LYPKY)
106 FORMAT(*0*r10Xs *NUMERATOR'+8F10,5)
107 FORMAT(r0*e8Xr *DENOMINATOR' »8F10.5)
LX=KX+1
LY=KY+1
104 CONTINUE
WRITE(6,130) (PRX(I)sIZIOPs1I1)
WRITE(6,120) (PRY(I),»IZIOP»1I2)
120 FORMAT(*0*»'PARTIALS WITH RESPECT TO Y'918E10.3)
130 FORMAT{(t0*» 'PARTIALS WITH RESPECT TO X'¢8E10.3)
WRITE(60160)
160 FORMAT('0")
RETURN
ENC



40

62

64
65

67
69

72

74
75

77
80
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SUBROUTINE MULOUT (KCHNL ¢ NUMC » NRATOR ¢+ NDENOM? KNR ¢+ KDR ¢ XCOMN» YCOMN) -
DIMENSION CON(30)e COM(30)s» XCOF(30)r XCOMN(10+S0)» YCOMN(10+50)
1 NUMC(30) s NRATOR(10020)s NDENOM(10,20)» KNR(20)+ KDR(20) '
DO 80 I=1,KCHNL ’
Con(l1)= 1.0

N=0

LAX=1

NAT= NUMCH(I)

WRITE(6,40) I

FORMAT (10 s 25X '*CHANNEL NO«*rI12¢2Xe *COMPENSATOR?)
DO 65 J=1/,NAT

MZNRATOR(IrJ)

Mi= M + 1

LAY=Z LAX + M

KL=0

DO 62 K=LAX,LAY

KLz=KiL+1

COmMIKL)= XCOMN(I,K)

LAX= LAY + 1

CALL POLMUL (CON+COMNeM» XCOF)

N=iN+M

N1=N+1

DO 64 K=1rN1

COin(K)= XCOF (K)

CONTINUE

WRITE(667)

FORMAT('0'r25X» *NUMERATOR COEFFICIENTS')
WRITE(6,69) (CON(J),J=1,N1)
FORMAT( 02 2Xe7E15,5)

Con(1)=1.0

N=y

LAX=1

CO 7% J=1+NAT

M= NDENOM(IeJ)

M1z M+l

LAY= LAX+M

KL=0

DO 72 KzLAXsLAY

KL=KL+1

COMIKL)= YCOMN(I«K)

LAX= LAY + 1

CALL POLMUL (CON'COM»N»M»XCOF)

N=iN+M

N1z=N+1

DO 74 K=1,N}

COn(K)= XCOF (K)

CONTINUE

WRITE(6,77)

FORMAT( 09 25X» '"DENOMINATOR COEFICIENTSY)
WRITE(6,69) (CON(J)rJ=1rN1)

CONTINUE

RETURN
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END
SUBROUTINE POLMUL (CONsCOMeNsM» XCOF)
DIMENSION CON(1)r COM(1l)» XCOF(1}sr CONA(50), COMRA(50)

FOR DOUBLE PRECISION REMOVE C FROM FIRST COLUMN OF NEXT CARD.
OOUBLE PRECISION CONe COMe XCOF» CONAr COMRA

- THE VECTOR CON IS A VECTOR OF THE COEFFICIENT OF A POLYNOMIAL

OF ORDER N

THE VECTOR COM IS A VECTOR OF THE COEFFICIENTS OF A POLYNOMIAL OF
ORDER M.,

THE VECTOR XCOF IS A VECTOR OF THE COEFFICIENTS OF THE PRODUCT OF
A POLYNOMIAL OF ORDER N AND A POLYNOMIAL OF ORDER M. THE
POLYNOMIAL OF WHICH THE COEFFICIENTS ARE THE VECTOR XCOF HAS AN
ORDER OF M + N.

DO 1 I=1'M
CONAI(I)=0.0
NX=N+1

DO 2 I=1:NX
LX=M+1I
CONA(LX)=CON(I)
MX=M+1

DO 3 1I=1.MX
MYzM+2~1
COMRA(1)=COM(MY)
D04 I=1sN
NX=M+1+4] .
COMRA(NX)=0,0
KY=M+N+1

KX=KY

D0 7 K=1!KY
XCUF(K)=0.0

DO 5 L=1vKX ,

XCOF (K)= CONA(L) * COMRA(L)+XCOF(K)
KX=KX=1 _

DO 6 J=1¢KX

CONA(J)I=CONA(J+1)

CONTINUE

RETURN

END
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